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Abstract

In this thesis, we study Lagrangian mean curvature flow of monotone Lagrangians in

two different settings, finding interesting and contrasting behaviour in each case.

First, we study the self-shrinking Clifford torus in C2. On the one hand, we find a

family of Ck-small Hamiltonian deformations that force type II singularities to form. On

the other hand, we find that any Hamiltonian deformation restricted to the unit sphere

flows back to the self-shrinking Clifford torus after rescaling.

Second, we study Lagrangian mean curvature flow in Kähler–Einstein manifolds

with positive Einstein constant. We show that monotone Lagrangians do not attain type

I singularities under mean curvature flow, an analogue of a result of Wang [49].

Next, we investigate Lagrangian mean curvature flow of Vianna’s exotic mono-

tone tori ( [47], [48]) in CP2. We define an (S1×Z2)-equivariance, and we prove a

Thomas–Yau-type result in this setting. We define a surgery procedure and show that

any equivariant monotone Lagrangian torus exists for all time under mean curvature

flow with surgery, undergoing at most a finite number of surgeries before converging to

a minimal Clifford torus.

In particular, our result show that there does not exists a minimal equivariant

Chekanov torus. Furthermore, we explicitly construct a monotone Clifford torus which

has two finite-time singularities under mean curvature flow with surgery, becoming a

Chekanov torus before eventually returning to become a Clifford torus again.





Impact Statement

Lagrangian mean curvature flow seeks to answer fundamental questions arising from

mirror symmetry by means of a geometric flow. The process of finding and under-

standing special Lagrangian submanifolds and their deformations lies at the heart of the

homological mirror symmetry and SYZ conjectures. These conjectures have ramifica-

tions for physics and string theory since Lagrangian submanifolds (or A-branes) are a

proposed boundary condition for open strings.

Geometric flows have found many uses over the last 40 years, in mathematics and

in other fields. In mathematics, Donaldson used Yang–Mills flow to find Hermitian

Yang–Mills connections on stable bundles. Perhaps most notably, Perelman proved the

Poincaré conjecture by use of Hamliton’s Ricci flow. In physics, Bray solved the Rie-

mannian Penrose conjecture by use of a geometric flow. In computer science, Geometric

flows have found application in image processing.

In this thesis, we study Lagrangian mean curvature flow and its singular behaviour,

particularly in the complex projective plane. Although the focus is on specific examples,

the methods used are deliberately chosen to have a wider application. The ideas and tools

developed are arguably just as important as the results, which show interesting, new and

at times unexpected behaviour. We expect that the themes of the thesis and the methods

used will be of use to anyone wishing to study Lagrangian mean curvature flow in Fano

manifolds in the future.
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Chapter 1

Introduction

1.1 Historical remarks

1.1.1 Mirror symmetry and Lagrangian mean curvature flow

At the turn of the millennium, two revolutions were occurring in different halves of

geometry. The first came in algebraic and symplectic geometry from a somewhat sur-

prising source. In physics, attempts to quantize gravity had led to string theory. In this

theory, particles gain a dimension to become 1-dimensional strings and this necessitates

the enlargement of the background spacetime from 4 dimensions to 10. This is achieved

by augmenting the usual 4-dimensional Minkowski space with tiny 6-dimensional man-

ifolds, which for physical reasons known as supersymmetry must have the structure of

Calabi–Yau 3-folds.

A pattern first observed by physicists while performing this quantization led to

mirror symmetry, a conjectural identification of Calabi–Yau manifolds M with a mirror

Calabi–Yau M̂. Despite the lack of physical evidence in favour of string theory, or

mathematical rigour in the physical derivation of the mirror symmetry, the series of

conjectures spawned from this observation turned out to be remarkably prescient. They

found initial success in enumerating various mirror pairs of Calabi–Yau manifolds with

inverted Hodge numbers (h1,1(M) = h2,1(M̂) and vice versa) [8] by a theory known as

closed string mirror symmetry. A few years later, consideration of open string mirror

symmetry led to two wide ranging and influential conjectures, known as Kontsevich’s

homological mirror symmetry or HMS [28] and the Strominger–Yau–Zaslow or SYZ
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conjecture [44]. In addition, evidence begun to mount that mirror symmetry existed in

some form for a wider class of Kähler–Einstein manifolds in some form [23].

On the one hand, the SYZ conjecture posits a mirror relationship between special

Lagrangian fibrations of M and M̂. These special Lagrangian fibrations (i.e. fibrations of

M by half-dimensional volume-minimising Lagrangian submanifolds) are largely con-

jectural and constructing them has been a difficult process. On the other hand, HMS

relates the complex geometry of M to the symplectic geometry of M̂ (and vice versa) by

comparing the derived category of coherent sheaves Db Coh(M) to the derived Fukaya

category DbF (M̂) of the mirror. Though coherent sheaves are well understood objects,

the Fukaya category was not, and many parts of it are still poorly understood to this day.

The Fukaya category F (M) has objects Lagrangian submanifolds of M and morphisms

between them given by their intersections. Either way, it was fast becoming necessary

to develop a deeper understanding of the Lagrangian structure of M, whether it was to

find special Lagrangian fibrations or to better understand the Fukaya category.

The other revolution was occurring in Riemannian geometry and geometric analy-

sis. The 1980s saw the introduction of two geometric flows, that is parabolic PDEs gov-

erning the evolution of some geometric structure. Hamilton introduced Ricci flow [20],

an intrinsic flow given by evolving the metric g of a manifold according to its Ricci cur-

vature Ricg. Huisken introduced mean curvature flow [24], an extrinsic flow given by

the gradient descent flow of the area functional; equivalently, submanifolds F : M→ N

allowed to evolve according to their mean curvature ~H.

It had long been clear that analytic methods could prove to be tractable approaches

to some of the most difficult problems in modern geometry. For instance, Yau’s proof

[53] [54] of the Calabi conjecture reduces the problem of finding Calabi–Yau metrics

on a manifold M with c1(M) = 0 to solving a fully non-linear, elliptic PDE known

as a Monge–Ampère equation. Geometric flows first came to wider prominence with

Perelman’s proof [39] in 2003 of the Poincaré conjecture by Ricci flow, using a method

identified by Hamilton [21] a few years earlier. The idea was to decompose 3-manifolds

into canonical pieces by a process called Ricci flow with surgery. This presented great

technical difficulties in understanding the nature of singularities of the flow, and the
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paper was in many ways well ahead of its time. The subsequent decade saw many

attempts to further this work, both in the extension of Perelman’s ideas to 4-manifolds

and in the use of surgery in other geometric flows. Notably, in mean curvature flow,

Huisken and Sinistrari [26] were able to decompose closed 2-convex hypersurfaces into

canonical pieces using techniques similar to those used in Ricci flow.

Although seemingly quite disparate, these two revolutions are linked by the work

of Smoczyk [41] and a conjecture of Thomas–Yau [46]. Smoczyk showed that the La-

grangian condition is preserved under mean curvature flow in Kähler–Einstein man-

ifolds. Building on this, Thomas–Yau conjecture that under mean curvature flow,

an almost-calibrated Lagrangian in a Calabi–Yau converges to the unique special La-

grangian in its Hamiltonian isotopy class. It has since become clear that singularities

are in many cases inevitable in Lagrangian mean curvature flow, but adaptations of the

Thomas–Yau conjecture were presented by Joyce [27]. Following the premise of the

ideas of Thomas–Yau, Joyce focuses on the relationship between mirror symmetry, the

Fukaya category and Lagrangian mean curvature flow. Put simply, his main premise

is that by mirror symmetry, Lagrangian mean curvature flow should replicate on the

symplectic side the features on the complex side.

1.1.2 Lagrangian mean curvature flow in Fano manifolds

Though the original Thomas–Yau conjecture and most of Joyce’s paper focus on the

Calabi–Yau case, mirror symmetry has been shown to work for Fano manifolds in a

modified form and Joyce conjectures results in this setting in the final section of [27].

In this case, Thomas–Yau type-results require restriction to the class of monotone La-

grangians. From a symplectic point of view, monotone Lagrangians are natural to study

since they capture aspects of the global topology of symplectic manifolds. From the

point of view of Lagrangian mean curvature flow, monotone Lagrangians are arguably

even more interesting. They are defined by the property that the mean curvature is ex-

act, and hence they form a preserved class. Moreover, as we will show, they cannot

attain type I singularities under mean curvature flow, thereby ruling out a large class of

potential singularities.

The first Fano manifold of interest is the complex projective line or the 2-sphere
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CP1 = S2. Here all curves are Lagrangian and monotone Lagrangians divide the sphere

in to equal area pieces. We understand Lagrangian mean curvature flow well in this

setting: monotone Lagrangians exist for all time under the flow and converge to geodesic

great circles in infinite time. This result mirrors that of the complex geometry of the

mirror manifold to CP1: The mirror is a so-called Landau–Ginzburg model (C∗,z+1/z),

and a technical but easily calculable result shows that there are only two interesting

objects in the relevant category of coherent sheaves, each corresponding to the two spin

structures on the equator.

A natural question is then to ask whether we can find similar results for higher

dimension Fano manifolds. For instance, the mirror of CP2 is essentially no more com-

plicated in its complex geometry than CP1. However, the symplectic geometry of CP2

is vastly more complicated.

Vianna ( [47], [48]) found an infinite family of exotic monotone tori in the com-

plex projective plane CP2. These tori are built inductively from a minimal monotone

Lagrangian known as the Clifford torus by a series of Lagrangian surgeries called muta-

tions. From a mean curvature flow point of view, these mutations resemble closely so-

called Lawlor neck singularities, such as those observed by Neves [33] and constructed

explicitly by Wood ( [51], [52]).

The natural question then to ask is whether Lagrangian mean curvature flow col-

lapses this family of exotic tori to the Clifford torus by a sequence of mean curvature

flow surgeries. It is this idea that is the main premise of this paper, in particular the

results of Chapter 4.

1.2 Summary of Results
We study mean curvature flow of Lagrangian tori in two different ambient manifolds: In

Chapter 3, we study Clifford tori in C2, and in Chapter 4 we study Clifford and Chekanov

tori in CP2. We prove contrasting results in each case, finding in each situations in which

type II singularities are inevitable and also situations where Clifford tori are stable.

Section 3 is joint work with Lotay and Schulze, from the paper [16]. For Lagrangian

mean curvature flow, type I singularities are not common. The work of Wang [49] shows
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that type I singularities do not occur for almost-calibrated Lagrangian mean curvature

flows. The main goal of the paper [16] is to show that even for monotone Lagrangians,

where type I singularities do exist, they are not the norm. We prove two results on the

Lagrangian mean curvature flow of the self-shrinking Clifford torus LCl ∈ C2:

Theorem 1.2.1. Let LCl ⊂ S3(2) ⊂ C2 be a self-shrinking Clifford torus. Then the fol-

lowing hold:

1. Instability: There exists an arbitrarily Ck-small Hamiltonian perturbation of LCl

such that the flow does not flow back to the self-shrinking Clifford torus.

2. Stability: Any Hamiltonian deformation of LCl restricted to the 3-sphere S3(2)

forms a type I singularity at the origin with type I blow-up given by LCl.

We provide full definitions in the Chapters 2 and 3.

The first result extends earlier results of Groh–Schwarz–Smoczyk–Zehmisch [18]

and Neves [34], where it was shown that the Clifford torus is unstable under sufficiently

large Hamiltonian perturbations. Taken together, the two results answer a question of

Neves [35, Question 7.4] asking for conditions on Lagrangian tori in C2 that guarantee

convergence to a self-shrinking Clifford torus after rescaling at the singularity.

We also prove that LCl is locally unique as a self-shrinker for mean curvature flow

(not just as a Lagrangian). We omit this discussion of this result from this thesis as it

does not pertain to Lagrangian mean curvature flow.

In section 4, we study mean curvature flow in CP2. First of all, we show that type I

singularities do not occur for monotone Lagrangian in Kähler–Einstein manifolds with

positive Einstein constant:

Theorem 1.2.2. Let Ft : Ln→M2n be a monotone Lagrangian mean curvature flow in a

Kähler–Einstein manifold M with Einstein constant κ 6= 0. Then Ft does not attain any

type I singularities.

This is the positive curvature equivalent of Wang’s result [49] on type I singularities

for almost-calibrated Lagrangian in Calabi–Yau manifolds.
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For the remaining results, we need two mild extensions of existing well-known

theorems. Since these results are independently useful, we state them here. First, we

extend a result which dates back to Harvey–Lawson in the Calabi–Yau case:

Theorem 1.2.3. Let Ω be a holomorphic volume form on an open subset U ⊂ M of a

Kähler–Einstein manifold. If L is a Lagrangian in U, then for any X ∈ TpL we have

H(X) ·Ω = dθ(X) ·Ω− i∇X Ω,

where H is the mean curvature 1-form and θ is the Lagrangian angle of L with respect

to Ω.

Suppose now that M is an isometric toric manifold, that is to say there is an isomet-

ric Hamiltonian action of T n on M2n. Away from the singular points of the action, the

level sets {Lα} are a Lagrangian fibration, and we can define Ω such that θ(Lα) = 0

for all α . Then for any X = Y + JZ with Y,Z ∈ TpL we have

H(X) = dθ(X)+HLα (p)(Y ),

where HLα (p) is the mean curvature 1-form of the unique Lagrangian Lα passing through

p.

Second, we extend a result of Cieliebak–Goldstein [11] to include discs with cor-

ners, in the same way that the Gauss–Bonnet thoerem can be extended to include discs

with corners. We use this result extensively in Chapter 4 to prove the main theorems.

Furthermore, since it relies only on topological properties, it seems likely that it will

be useful in many scenarios when considering Lagrangian mean curvature flow in Fano

manifolds.

Extending the Maslov class µ of a disc D to a number µ̃ accounting for turning

angles at corners, we prove that

Theorem 1.2.4. Let L1, . . . ,Lm be Lagrangian in a Kähler–Einstein manifold M and let

u : (D,(∂D1, . . . ,∂Dm))→ (M,(L1, . . . ,Lm)).
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Then

κ

∫
D

ω− µ̃(D) =−∑
i

∫
∂Di

HLi.

See Chapter 2 for definitions of terms used and proofs of these two theorems.

The main results of Chapter 4 concern monotone Lagrangian tori in CP2. We re-

strict to a subclass of Lagrangian tori Lγ which are generated from closed curves γ ∈ C

by a particular (Z2 × S1) rotation; we call these tori equivariant. This is a slightly

stronger equivariance than has been considered previously in the literature, but since we

already observe interesting and new behaviour in this class, it seems like a reasonable

restriction. The main theorem of the chapter is the following:

Theorem 1.2.5. Let Lγ be a monotone equivariant Lagrangian torus in CP2. Then under

Lagrangian mean curvature flow with surgery, Lγ exists for all time with a finite number

of surgeries and converges to a minimal Clifford torus as t→ ∞.

We provide full definitions, including a precise definition of the equivariance and a

definition of Lagrangian mean curvature flow with surgery, in Chapter 4.

There are two Hamiltonian isotopy classes of tori that can be realised as equiv-

ariant curves, namely the Clifford torus and the Chekanov torus, given respectively by

curves γ containing and not containing the origin. The above result therefore implies

that Chekanov tori undergo at least one surgery to become Clifford tori. We note that

this implies that there is no equivariant minimal Chekanov torus, and we expect this to

apply more generally.

The above result might seem to imply that a Clifford torus does not have singulari-

ties under Lagrangian mean curvature flow. However, this is not the case:

Theorem 1.2.6. There exists a Clifford torus Lγ in CP2 such that under mean curvature

flow Lγ has a finite-time singularity and surgery at the singularity makes Lγ a Chekanov

torus.

Thus the behaviour we observe is of a cyclical nature: a Clifford torus can collapse

to become Chekanov torus, which then exists for some time after surgery before collaps-

ing to a Clifford torus again. This process can repeat any finite number of times before

eventually becoming a stable Clifford torus. We categorise this behaviour in the proof of
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Theorem 1.2.5 by observing that a certain intersection number decreases under the flow

with surgery.

1.3 Notations and conventions
Except where explicitly notated otherwise, we use the following conventions throughout

this thesis.

We consider mean curvature flow of Lagrangians Ft : L→M in (2n)-dimensional

Kähler–Einstein manifolds M, with Einstein constant κ . We will drop the subscript t

when the meaning is clear. We will frequently abuse notation by conflating a manifold

with its embedded image (writing for instance Lt = L = F(L) = Ft(L)), and conflate

vectors with pushforwards and forms with pullbacks, as is standard in the literature. We

extend these conventions to curves γ(s) ∈ C.

By default, Lagrangians are assumed to be embedded, orientable, and all curves

γ(s) ∈ C are assumed to be closed and simple. The main exceptions to the above are

cones/real projective planes/lines through the origin considered in Chapter 4, and the

minimal immersed Lagrangians considered in Section 4.6.



Chapter 2

Preliminaries

2.1 Lagrangians in Kähler–Einstein manifolds
Let M2n be a manifold of even dimension. We recall the following definitions:

Definition 2.1.1.

1. A Riemannian metric g is a positive-definite symmetric 2-tensor on M. (M,g) is

called a Riemannian manifold.

2. A symplectic form ω is a closed, non-degenerate 2-form on M. (M,ω) is called a

symplectic manifold.

3. An almost-complex structure J is a (1,1)-tensor on M satisfying J2 = −1. (M,J)

is called an almost-complex manifold.

4. A triple of structures (g,ω,J) is called compatible if g(X ,Y ) = ω(X ,JY ).

(M,g,ω,J) is called almost-Kähler.

5. In addition, if J is integrable, or equivalently ∇J = 0 where ∇ is the Levi–Civita

connection of g, (M,g,ω,J) is called Kähler.

6. In addition, if Ricg = κg for some constant κ , (M,g,ω,J) is called Kähler–

Einstein with Einstein constant κ .
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7. In addition, if κ = 0, we will call M a Calabi–Yau manifold, and if κ > 0 we will

call M a Fano manifold.1

In the entirety of this thesis, M is assumed to be Kähler–Einstein with constant κ .

The following two examples constitute the main focus of Chapters 3 and 4 respectively.

Example 2.1.2. Let

Cn = {(z1 = x1 + iy1, . . . ,zn = xn + iyn) : x j,y j ∈ R}

with

g = dx2
1 +dy2

1 + · · ·+dx2
n +dy2

n

ω = dx1∧dy1 + · · ·+dxn∧dyn

J(∂x j) = ∂y j , J(∂y j) =−∂x j

Then Cn satisfies all the above definitions with κ = 0.

Example 2.1.3. Let CPn be complex projective space, i.e. the quotient of complex

n-space Cn by the standard action of C∗:

(z0, . . . ,zn)∼ (wz0 : · · · : wzn), w ∈ C∗.

Alternately, CPn is the quotient of the unit sphere S2n+1(1)⊂Cn+1 under the identifica-

tion

(z0, . . . ,zn)∼ (eiαz0 : · · · : eiαzn), eiα ∈ S1,

known as the Hopf fibration. The quotient induces a Riemannian metric on CPn from

the round metric on the sphere as a Riemannian submersion called the Fubini–Study

metric. Similarly, the quotient from Cn induces a symplectic form (the Fubini–Study

1Neither of these definitions is standard. For instance, in the Calabi–Yau case, various authors require
some combination of additional conditions such as compact, simply connected or with holonomy exactly
equal to SU(2). For Fano manifolds, a metric is typically not specified, instead requiring that the anti-
canonical bundle K∗M is ample. For the purposes of Lagrangian mean curvature flow, the definitions we
give make the most sense: A Riemannian metric is always specified by default and the most important
factor is the Ricci curvature of the ambient space.
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form) and an almost complex structure. Compatibility follows from compatibility of the

forms in Example 2.1.2. Indeed, CPn is Kähler–Einstein with constant 2(n+1).

Definition 2.1.4. Let M2n be a symplectic manifold. Then a n-dimensional submanifold

F : Ln→M2n is called Lagrangian if F∗ω = 0.

As is standard in the literature, we will often abuse notation by conflating a man-

ifold L with its embedding/immersion F(L). We extend this abuse of notation in the

natural way to vectors/tensors and their pushforwards/pullbacks.

2.1.1 The Lagrangian angle and mean curvature

In this section, we describe how one can characterise the mean curvature of Lagrangian

submanifolds using aspects of their symplectic geometry. In the Calabi–Yau sense, ideas

in this vein date back to Harvey–Lawson [22] and [36]. The material is all standard,

but we emphasise the perspective that the usual calculations apply locally and can be

modified to account for non-Ricci-flat manifolds.

Consider the holomorphic volume form

Ω = dz1∧·· ·∧dzn

on Cn. The space of Lagrangian subspaces L (n) is isomorphic to U(n)/O(n), so any

Lagrangian subspace Λ may be written as A · span{x1, . . . ,xn} for some unitary matrix

A, unique up to orthogonal transformations. Thus we have that

|ΩΛ|= |A| ·Ω(∂x1 , . . . ,∂xn) = 1

and hence

ΩΛ = eiθ volΛ

for some θ . Now let Ω be a non-vanishing holomorphic volume form on some open

subset U ⊂ M, i.e. a section of the canonical bundle KU . Then there exist complex

coordinates z1, . . . ,zn on some subset V ⊂U and a holomorphic function f on V such

that

Ω = f dz1∧·· ·∧dzn.
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Furthermore, by Darboux’s theorem, we can choose V small enough that V is symplec-

tomorphic to Cn with the standard structure, and hence we can conclude that the above

extends to any Lagrangian L in U , i.e. we have

ΩL = eiθ volL

for some function θ : L→ R/2π .

In the case that M is Calabi–Yau, one can find a global non-vanishing holomorphic

volume form Ω, so the above applies to any Lagrangian L in M. In this case, we call θ

the Lagrangian angle of L. For more general Kähler manifolds with local holomorphic

volume forms, we call θ the Lagrangian angle of L relative to Ω. Furthermore, we call

Lagrangians L with θ = 0 special Lagrangian (relative to Ω).

We now investigate the mean curvature of Lagrangian submanifolds. Recall that a

Riemannian submanifold F : L→ (M,g) of a Riemannian manifold has second funda-

mental form

A(X ,Y ) = ∇XY −∇XY,

a symmetric 2-form with values in the normal bundle, where ∇ is the Levi–Civita con-

nection of the ambient metric g, and ∇ is Levi–Civita connection of the induced metric

F∗g. Since

∇XY −∇Y X = ∇XY −∇Y X = [X ,Y ],

we immediately see that A(X ,Y ) = A(Y,X), i.e. A is symmetric and hence is tensorial.

The mean curvature is then defined to be the trace of the second fundamental form

~H = traceA.

Note that both A and ~H lie in the normal bundle to L. Lagrangian submanifolds in

Kähler manifolds have the property that J is an isometry between the tangent and normal

bundles of L. Thus we have isometries

NL∼= T L∼= T ∗L.
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Furthermore, the form

H(X) = ω(X , ~H)

is zero restricted to NL since L is Lagrangian and ~H is normal, hence it is appropriate to

consider H a 1-form on L, called the mean curvature 1-form. Furthermore, in the case

that M is Kähler–Einstein, H is closed (see for instance [43], though we prove stronger

results in various settings later in this thesis.) This raises the possibility that H could be

exact, and as the following proposition shows, this holds in a Calabi–Yau whenever the

Lagrangian angle is a function on L.

Since the details of the proof are important later, we present a proof here, following

the method found in Oh [38] or Thomas–Yau [46]. We stress that the proof relies on the

Calabi–Yau specific fact that Ω is parallel.

Proposition 2.1.5. Let L be an oriented Lagrangian in a Calabi–Yau manifold M with

mean curvature 1-form H. Then H = dθ , where θ is the Lagrangian angle.

Proof. Let {e1, . . . ,en} be an orthonormal basis for TpL and extend to a local frame such

that {e1, . . . ,en,Je1, . . . ,Jen} is a basis for T M near p. We may choose this basis such

that ∇eie j vanishes for all i, j at p. In this basis, we have that

ΩL =
∧

i

(e∗i + i(Jei)
∗) ,

where e∗i is the dual of ei, and hence

Ω = e−iθ
∧

i

(e∗i + i(Jei)
∗)

Since ∇Ω = 0 in Calabi–Yau manifolds, it follows that

0 = ∇X Ω

=−idθ(X) ·Ω+ e−iθ
∑

j
(e∗1 + i(Je1)

∗)∧·· ·∧∇X(e∗j + i(Je j)
∗)∧·· ·∧ (e∗n + i(Jen)

∗).

Since any terms of ∇X(e∗j + i(Je j)
∗) which are not a scalar multiple of (e∗j + i(Je j)

∗)

vanish in the wedge product, we may rewrite the second term as
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∑
j

Å
∇X(e∗j + i(Je j)

∗)

Å
1
2
(e j− iJe j)

ãã
·Ω

So it follows that

idθ(X) =
1
2 ∑

j

(
∇X

Ä
(e∗j + i(Je j)

∗)
(
e j− iJe j

)ä
− (e∗j + i(Je j)

∗)(∇X(e j + iJe j))
)

=−1
2 ∑

j
(e∗j + i(Je j)

∗)(∇X(e j + iJe j))

=− i
2 ∑

j

(
e∗j(J∇X e j)+(Je j)

∗(∇X e j)
)

=−i∑
j

g(e j,J∇X e j),

where we have used the fact that (e∗j + i(Je j)
∗)
(1

2(e j− iJe j)
)
= 1 in the first two lines,

and have used the assumption that ∇eie j vanishes at p on the fourth line. Thus it suffices

to show that

H(X) = ∑
j

g(e j,J∇X e j) = ∑
j

ω(e j,∇X e j).

We calculate that

H(X) = ω(X , ~H) = ∑
j

ω

Ä
X ,∇e je j

ä
= ∑

j
ω(e j,∇e jX) = ∑

j
ω(e j,∇X e j),

since ω(e j,X) = 0 and we may assume that [X ,e j] vanishes. This completes the proof.

Note that the above proof implies that for any holomorphic volume form Ω defining

a Lagrangian angle by ΩL = eiθ volL, we have

H(X) ·Ω = dθ(X) ·Ω− i∇X Ω

for any X ∈ TpL. This demonstrates the first part of Theorem 1.2.3. For the second part,

we first construct a holomorphic volume form Ω from a Lagrangian fibration.

Let {Lα}α∈I be a Lagrangian torus fibration of a subset U ∈M. For each α , define

a holomorphic volume form ΩLα
along Lα , i.e. a unit section of the canonical bundle
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KM|Lα
, by

ΩL(X1, . . . ,Xn) = volL(X1, . . . ,Xn),

ΩL(JX1,X2, . . . ,Xn) = ivolL(X1, . . . ,Xn), etc.

for tangent vectors Xi ∈ TpL. Now let x ∈ U . There is a unique α(x) ∈ I such that

x ∈ Lα(x), so we define a section of KM|U by

Ω(x)(X1, . . . ,Xn) = ΩLα(x)(X1, . . . ,Xn),

for Xi ∈ TxM. We call Ω a relative holomorphic volume form (to the fibration Lα ).

In contrast to the Calabi–Yau case where Ω was always parallel, the volume form

defined here is in general not parallel. In [30], the form ΩL is differentiated in tangent

and normal directions. For tangent vector fields X ∈ Γ(T L) we have

∇̄X ΩL = iHL(X)ΩL (2.1.1)

where HL is the mean curvature 1-form on L. On the other hand, if JY = ∂As
∂ s |s=0 is the

normal vector field corresponding to a 1-parameter family As : L→ M of Lagrangians

immersions then the normal derivative is

∇̄JY ΩL =−idivL(Y )ΩL. (2.1.2)

Now suppose the fibration {Lα} are the level sets of a moment map for an isomet-

ric Hamiltonian T n-action on U . Since the action is an isometry, any vector field X̃

generated by the subgroup exp(tX) of T n has LX̃ volLα
= divLα

(X̃)volLα
= 0. Further-

more, since the action is Hamiltonian, JX̃ is a normal vector field corresponding to a

1-parameter family of Lagrangian immersions. So we have shown the second part of

Theorem 1.2.3.
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2.2 Lagrangian mean curvature flow
The fact that H is closed seems to imply that the Lagrangian condition is preserved under

mean curvature flow since
∂

∂ t
F = ~H

implies
∂

∂ t
F∗ω = d

Å
ω

Å
∂

∂ t
F, ·
ãã

= dH = 0.

This is clearly a necessary condition for the Lagrangian condition to be preserved, but is

not a priori sufficient. However, this premise can be integrated up to show:

Theorem 2.2.1 (Smoczyk [41]). In Kähler–Einstein manifolds, the Lagrangian condi-

tion is preserved for closed submanifolds under mean curvature flow.

We now present some of the basic facts of Lagrangian mean curvature flow, begin-

ning with evolution equations. The following calculation appears in Thomas–Yau [46],

but the results were known by Oh [38] and Smoczyk [42]. For any holomorphic volume

form Ω defining a Lagrangian angle by ΩL = eiθ volL, we have

i
∂

∂ t
θeiθ volL+eiθ ∂

∂ t
volL =

∂

∂ t

Ä
eiθ volL

ä
= LV ΩL = d (VyΩL) =−id

Ä
eiθ (JV )yvolL

ä
=eiθ dθ ∧ (JVyvolL)− ieiθ d†(JV )volL

Under mean curvature flow, i.e. V = ~H = J∇θ one recovers from this the evolution

equations

∂

∂ t
θ = d†dθ = ∆θ

∂

∂ t
volL =−|~H|2 volL

(2.2.1)

The mean curvature 1-form H satisfies the evolution equation

∂

∂ t
H = dd†H +κH, (2.2.2)

where κ is the Einstein constant, i.e. ρ = κω . It is clear then that the cohomology class

[He−κt ] is preserved under the flow. In particular, H exact is preserved.
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We now highlight a few particular subclasses of Lagrangians in Calabi–Yau mani-

folds, each preserved under mean curvature flow. In order of inclusion:

1. Special Lagrangians: Lagrangian submanifolds with θ = 0.

2. Minimal Lagrangians: Lagrangian submanifolds with ~H = 0. All special La-

grangians are minimal, and all minimal Lagrangians are special up to a choice of

phase.

3. Almost-calibrated Lagrangians: Lagrangian submanifolds where cosθ > ε > 0

everywhere, up to a choice of phase.

4. Zero-Maslov Lagrangians: Lagrangian submanifolds with θ : L → R a real-

valued function (i.e. not circle valued).

The final subclass of interest is that of monotone Lagrangians. Recall that the

space of Lagrangian subspaces L (n) in R2n is isomorphic to U(n)/O(n), and hence

det2 induces an isomorphism from µ : π1(L (n))→ Z, called the Maslov index. The

Maslov class of a disc is defined to be the Maslov index of the boundary under any local

trivialisation. Then we have the following theorem of Cieliebak–Goldstein [11], which

is fundamental to the rest of this thesis:

Theorem 2.2.2 (Cieliebak–Goldstein). In a Kähler–Einstein manifold M with Einstein

constant κ , the mean curvature 1-form H of a Lagrangian F : L→M is related to the

Maslov class µ of a disc u : (D,∂D)→ (M,L) by 2

κ

∫
D

ω−πµ(D) =−
∫

∂D
H. (2.2.3)

We call a Lagrangian submanifold monotone if for any disc u : (D,∂D)→ (M,L),

∫
D

ω = cµ(D), (2.2.4)

2Here and throughout the rest of this thesis, we abuse notation by conflating forms with their pullbacks
and curves in the image of a Lagrangian with their pre-image. For instance, in (2.2.3),∫

D
ω =

∫
D

u∗ω,
∫

∂D
H =

∫
F−1(u(∂D))

H.
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for a constant c dependent on M and L but not u. We call a disc u Maslov m if the

µ(u) = m. In the case of a monotone Lagrangian in an exact Calabi–Yau manifold (i.e.

ω = dλ ), and in view of (2.2.3), we see that (2.2.4) is equivalent to

∫
∂D

λ =
∫

D
ω = cµ(D) =

c
π

∫
∂D

H =
c
π

∫
∂D

dθ ,

hence in the literature for Lagrangian mean curvature flow where the Calabi–Yau case

(specifically Cn) is frequently the primary focus, the definition of monotone is often

taken as

[λ ] =C[dθ ].

Remark 2.2.3. The Cieliebak–Goldstein formula is a generalisation of the Gauss-

Bonnet formula. When M is a surface, ω is the Riemannian volume form on M, and

so M Einstein implies that ∫
D

K vol(D) = κ

∫
D

ω,

where K is the Gauss curvature. Moreover, all curves are Lagrangian so

∫
∂D

kg vol(∂D) =
∫

∂D
H

where k is the geodesic curvature. The Euler characteristic of a disc is 1, and the Maslov

class of a holomorphic disc in a symplectic surface is 1 by definition.

The above remark helps to motivate a mild generalisation of the Cieliebak–

Goldstein formula to include J-holomorphic polygons with boundary on multiple inter-

secting Lagrangians, comparable to generalising Gauss–Bonnet with a smooth boundary

to a piecewise-smooth boundary with corners and turning angles.

Theorem 2.2.4. Let L1, . . . ,Lm be Lagrangian in M and let

u : (D,(∂D1, . . . ,∂Dm))→ (M,(L1, . . . ,Lm))

denote a map from the unit disc with m marked points pi on the boundary to M, mapping
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pi to Li∩Li−1 and mapping the arc ∂Di from pi to pi+1 to Li. Then

κ

∫
D

ω−πµ̃(D) =−∑
i

∫
∂Di

HLi, (2.2.5)

where µ̃ is the Maslov class of u : (D,(∂D1, . . . ,∂Dm))→ (M,(L1, . . . ,Lm)), defined in

the proof below.

Proof. We first redefine the Maslov class in a way more suited to proving the theorem.

Consider a Lagrangian subspace L of a complex vector space Cn. Let Λ(n,0)Cn be the

space of (n,0)-forms on Cn, i.e. the space of holomorphic volume forms. Since L is a

Lagrangian subspace, there is an element τ(L) in Λ(n,0)Cn of unit length which restricts

to give a real volume form on L. One observes this immediately for the Lagrangian

subspace L0 = span{x1, . . . ,xn} with τ(L0) = dz1 ∧ ·· ·dzn, and since any Lagrangian

subspace L = A ·L0 for some A ∈ U(n), we have τ(L) = A · τ(L0) where we let U(n) act

on holomorphic (n,0)-forms as det(A). The map A is unique up to the action of O(n),

so τ(L) is unique up to sign. Thus we obtain a unique element

τ
2(L) ∈ K2(Cn) = Λ

(n,0)Cn⊗Λ
(n,0)Cn.

Now let L be a Lagrangian in a Kähler manifold M2n. Treating the tangent space of L as

a Lagrangian subspace of Cn, as above we have a unit-length section

τ
2
L : L→ K2(M),

where K2(M) is the square of the canonical bundle K(M) = Λ(n,0)T ∗M of M.

Let u : (D,∂D)→ (M,L) be a smooth map from the unit disc to M with boundary

in L. Since H2(D) = 0, u∗K(M) is trivial so there exists a unit-length section τu of K(M)

over u(D). On the boundary, there exists an S1-valued function eiα : ∂D→ S1 such that

τ
2
L = eiα

τ
2
u .
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We define the Maslov class as minus the winding number of eiα , i.e.

µ(D) =
−1
2π

∫
∂D

dα.

This definition agrees with the usual definition of Maslov class, as can be verified by

checking it satisfies the standard axiomatic description.

Now, suppose we have Lagrangians L1, . . . ,Lm in M. We have, as above, sections

τ2
Li

. For any u : (D,(∂D1, . . . ,∂Dm))→ (M,(L1, . . . ,Lm)), we obtain as above S1-valued

functions eiαi : ∂Di→ S1 with

τ
2
Li
= eiαiτ

2
u .

We define the Maslov number µ̃(D) (here no longer integer-valued) by

µ̃(D) =
−1
2π

∑
i

∫
∂Di

dαi,

which we note is well-defined.

With the definitions out of the way, we can prove the theorem. For simplicity, we

prove for m = 1, i.e. the case where we have a Lagrangian L = L1 with a single self-

intersection. This suffices for all the proofs later in the thesis, but the more general result

stated above follows a similar argument. We sketch the proof, a more detailed discussion

can be found in [11].

As in Cieliebak–Goldstein, we have that τ2
L defines an imaginary-valued connection

1-form ηL by ∇τ2
L = ηL⊗ τ2

L . It is a classical result due to Oh [37] that ηL = 2iH.

Similarly, for the section τ2
u , we have an imaginary-valued connection 1-form ηu

defined by ∇τ2
u = ηu⊗ τ2

u . We have that dηu = −2RK , where RK is the curvature of

K(M), which in the Kähler–Einstein case implies that dηu = 2iρ = 2iκω .

The connection 1-forms ηu and ηL are related by

ηL = ηu + idα,

so ∫
∂D

H =
∫

∂D
− i

2
ηL =

∫
∂D
− i

2
ηu +

1
2

∫
∂D

dα = κ

∫
D

ω−πµ̃(D).
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Let us now consider the implications of the Cieliebak–Goldstein formula for La-

grangian mean curvature flow. From (2.2.3) and the evolution equation (2.2.2) we obtain

∂

∂ t

∫
D

ω =− 1
κ

∫
∂D

dd†H +κH =−
∫

∂D
H

= κ

∫
∂D

ω−πµ(D).

(2.2.6)

L is monotone when µ(D) is proportional to
∫

D ω , so we note two immediate corol-

laries for κ 6= 0.

Corollary 2.2.5. Let L be a Lagrangian in a Kähler–Einstein manifold with κ 6= 0. H is

exact if and only if L is monotone with monotone constant π/κ .

Corollary 2.2.6. Monotone Lagrangians are preserved under mean curvature flow.

When κ 6= 0, the monotone constant π/κ is invariant under the flow.

Proof. The result has been shown already for κ = 0. For κ 6= 0, the result follows from

Corollary 2.2.5 and the fact that exactness of H is preserved by equation (2.2.2).

To illustrate the theory so far, we consider the best understood example of La-

grangian mean curvature flow in non-Ricci-flat manifolds.

Consider the two sphere S2 = CP1 with the standard Kähler metric and let γ be

an embedded closed curve in S2. Then there are, up to reparametrisation, exactly two

J-holomorphic discs u1,u2 : D→ S2 with ui(∂D) = γ . We have that γ is monotone when

∫
D

u∗1ω =
∫

D
u∗2ω,

where ω is the standard Fubini–Study form on CP1 = S2, i.e. when γ divides S2 into

two pieces of equal area. Then we have two behaviours:

Proposition 2.2.7.

1. If γ is not monotone, γ attains a type I singularity in finite time with blow-up a

self-shrinking circle.
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2. If γ is monotone, mean curvature flow exists for all time and converges in infinite

time to a great circle.

Proof. Recall Grayson’s theorem [17]: curve-shortening flow in surfaces either attains

finite-time singularities with type I blow-up a shrinking circle, or exists for all times and

converges to a geodesic. This the result follows from (2.2.6) in both cases.

2.3 Singularities in Lagrangian mean curvature flow
In mean curvature flow, singularities are studied and classified by analysing their be-

haviour at the singular time using a procedure called a blow-up. A solution Ft : L→M

to the mean curvature flow equation

∂

∂ t
Ft = ~H,

always exists on some maximal time interval [0,T ), though to guarantee uniqueness one

has to make modifications to account for reparametrisations. If T <∞, then it can further

be shown that

limsup
t→T

max
Lt
|A|2 = ∞,

which Smoczyk [43] comments is a folklore result for higher codimension mean cur-

vature flow: the proof follows the same lines as the proof for codimension 1, where

the result can be achieved relatively simply by considering the evolution equations for

|∇mA|2, and showing that bounds on |A|2 imply bounds on |∇mA|2 for all m≥ 0. Bounds

on all derivative of |A|2 imply smooth convergence to a limiting immersion FT : L→M

and hence short-time existence implies T is not the maximal time.

Singular behaviour is common in mean curvature flow. For instance, any compact

initial condition F0 : L→ Rn achieves a singularity at a finite time T . Singularities are

classified into two types based on the rate of blow-up of |A|2. If

sup
Lt

|A|2 ≤C(T − t)−1,

for some constant C, we call the singularity type I, and if no such bound exists, we call it
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type II. The primary reason for this distinction is the following: for λ > 0, x̃ = λ (x−x0),

t̃ = λ 2(t− t0),

F̃λ

t̃ := λ

Ä
Ft0+λ−2t̃− x0

ä
is a mean curvature flow, called a parabolic rescaling. Using Huisken’s monotonicity

formula, one can show that any sequence of parabolic rescalings Fλi
t̃ with λi → ∞ at

a type I singularity (x0, t0) = (x,T ) of the flow converges subsequentially to a smooth

limiting flow F∞

t̃ , called a type I blow-up (possibly not unique), with the property that

~H =
x⊥

2t̃
.

Solitons of mean curvature flow of this type are called self-shrinkers since they flow

by homotheties. If the singularity is instead type II, one still can find a weak limit

to parabolic rescalings, though now the limiting flow is a Brakke flow [6]: a flow of

rectifiable varifolds rather than smooth manifolds. We also call this limit a type I blow-

up, even though the singularity is type II.

Consider embedded hypersurface mean curvature flow. In this case, type I singu-

larities are conjecturally generic. The simplest case is curve shortening flow in the plane

(i.e. the case of curves γt : S1→R2). Here, all curves attain type I singularities with type

I blow-up a self-shrinking circle in finite time. This kind of regularity does not exist in

higher dimensions, even though we still expect type I singularities to be the norm. Type

II singularities do exist, but tend to occur as degenerate cases. The prototypical example

of this behaviour is for a dumbbell in R3, i.e. a smoothing of a connect sum of two

spheres S1,S2 with radii r1 ≤ r2 by a cylindrical neck of radius s. Here, three behaviours

may be observed. Firstly, if the neck is narrow enough, the neck shrinks to form a type I

singularity with type I blow-up given by a self-shrinking cylinder. Secondly, if s is large

enough compared to r1, the sphere may shrink before the neck collapses and prevent a

cylindrical singularity forming, before eventually collapsing to a self-shrinking sphere.

The third option is the degenerate case when r1 < r2. If r1 is chosen carefully with re-

spect to s, one can obtain a behaviour where S1 shrinks at precisely the same time that

the neck shrinks, leading to a type II singularity.
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This behaviour is to be expected according to the work of Huisken–Sinestrari [26].

They show that 2-convex hypersurfaces in Rn, n ≥ 4 attain singularities of the three

types above, and go further in providing surgery procedures for each of the three cases.

In this way, they can decompose 2-convex hypersurfaces into constituent parts by mean

curvature flow with surgery.

In contrast to the hypersurface case, type I singularities are rare in Lagrangian mean

curvature flow, and type II singularities are commonplace. In certain situations, there

are no type I singularities: Wang [49] showed that there are no type I singularities for

almost-calibrated Lagrangian mean curvature flow. We show in Chapter 4 that there

are no type I singularities for monotone Lagrangians in Kähler–Einstein manifolds with

κ 6= 0. Hence it becomes important to understand type II singularities in Lagrangian

mean curvature flow.

Here the state of the art are the compactness results of Neves, originally established

for zero-Maslov Lagrangians in [33] but later extended to monotone Lagrangians in [34].

We present them in the latter form since it is more applicable to the subject matter of

this thesis. Compact monotone Lagrangians in Cn have a maximal existence time strictly

controlled by the monotone constant. One can always normalise by homotheties of the

ambient space so that this maximal time of existence is 1/2. Neves’ theorems concern

singularities happening before this time.

Theorem 2.3.1 (Neves’ Theorem A). Let L be a normalised monotone Lagrangian in

Cn developing a singularity at T < 1/2. For any sequence of rescaled flows L j
s at the

singularity with Lagrangian angles θ
j

s , there exists a finite set of angles {θ̄1, . . . , θ̄N}

and special Lagrangian cones L1, . . . ,LN such that after passing to a subsequence we

have that for any smooth test function φ with compact support, every f ∈ C2(S1) and

s < 0

lim
j→∞

∫
L j

s

f (exp(iθ j
s ))φ dH n =

N

∑
k=1

mk f (exp(iθ̄k))µk(φ),

where µk and mk are the Radon measure of the support of Lk and its multiplicity respec-

tively.

Furthermore the set of angles is independent of the sequence of rescalings.
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Theorem B applies for monotone Lagrangians in C2.

Theorem 2.3.2 (Neves’ Theorem B). Let L be a normalised monotone Lagrangian in

C2 developing a singularity at T < 1/2. For any sequence of rescaled flows L j
s at the sin-

gularity with Lagrangian angles θ
j

s , and for any sequence of connected components Σ j

of L j
s ∩B4R(0) intersecting BR(0), there exists a unique angle θ̄ and special Lagrangian

cone Σ such that after passing to a subsequence we have that for any smooth test function

φ on B2R(0) with compact support, every f ∈C2(S1) and s < 0

lim
j→∞

∫
Σ j

f (exp(iθ j
s )φ dH n = m f (exp(iθ̄))µ(φ),

where µ and m are the Radon measure of the support of Σ and its multiplicity respec-

tively.

Heuristically, these theorems give the type I blow-up models of type II singularities

of Lagrangian mean curvature flow as (unions of) special Lagrangian cones. Consider

the n = 2 case: by considering the hyper-Kähler rotation, one sees that the only special

Lagrangian cones are unions of special Lagrangian planes with equal Lagrangian angle.

Assuming all planes are multiplicity 1, there is then only one blow-up model up to

rotation, a union of two transversely intersecting special Lagrangian planes with the

same Lagrangian angle.

We can further characterise singular behaviour by a procedure called the type II

blow-up. The precise details of this procedure are not important to this thesis, but we

sketch the general principle. We refer the reader to Mantegazza [31] for additional de-

tails. Instead of blowing up at a parabolic rate and at a fixed point in time and space,

we blow up at a sequence of space-time points (xi, ti) maximising the second fundamen-

tal form |A| on the interval [0,T − 1/i], at a rate dictated by the second fundamental

form |A|. Thus we guarantee convergence locally smoothly to an eternal mean curvature

flow, i.e. a mean curvature flow existing for all times t ∈ (−∞,∞) (as opposed to the

self-shrinkers found by the type I procedure, which are ancient but not eternal).

Note that the type II blow-up is not unique and doesn’t have to satisfy the same

asymptotics as the type I blow-up. There are few results on type II blow-ups for La-
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grangian mean curvature flow so far, but the most important appears in the work of

Wood [51], where he shows that almost-calibrated Lagrangian cylinders with prescribed

asymptotic behaviour achieve type II singularities in finite time, and the type II blow-up

is given by a special Lagrangian called a Lawlor neck asymptotic to the type I blow-up.

Lawlor necks are best described as the hyperKähler rotation of the complex curves

{zw= c 6= 0}⊂C2. It is a fundamental question whether these are the generic singularity

model for Lagrangian mean curvature flow.

We note one final property of singularities of mean curvature flow. In general,

geometric flows may have infinite-time singularities; indeed, this occurs in Ricci flow

and in Yang–Mills flow, amongst others. In mean curvature flow however, one can rule

out infinite-time singularities in certain cases. For simplicity, we state the following

result of Chen–He [10] as we need it in this paper, though it applies in a far wider

generality.

Proposition 2.3.3. Let L be a Lagrangian mean curvature flow of a compact Lagrangian

in a compact Kähler–Einstein manifold M with κ > 0. Then L either attains a finite-time

singularity or has uniformly bounded |A|2 for all time and converges subsequentially to

a minimal submanifold in M in infinite time.
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Lagrangian mean curvature flow of the

Clifford torus in C2

3.1 The self-shrinking Clifford torus
We define the self-shrinking Clifford torus LCl in two equivalent ways. Firstly, as a

product torus,

LCl =
¶√

2
Ä

eiθ1 ,eiθ2
ä

: θ1,θ2 ∈ R
©
⊂ S3(2)⊂ C2.

Secondly, as an S1-equivariant Lagrangian,

LCl =
¶

2eiφ (cosα,sinα) : φ ,α ∈ R
©
⊂ S3(2)⊂ C2.

These two descriptions are equivalent: to see this, first apply the unitary transformation

1√
2

Ñ
1 1

−i i

é
and then apply the change of coordinates

φ =
θ1 +θ2

2
and α =

θ1−θ2

2
. (3.1.1)
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The choice of scaling here is necessary to ensure that LCl satisfies the self-shrinker equa-

tion

~H =−X⊥/2, (3.1.2)

(here, X⊥ denotes the projection of the position vector onto the normal bundle.) Let

X : (θ1,θ2) 7→
√

2
(
eiθ1,eiθ2

)
. Then

X∗Ω =−2ei(θ1+θ2)dθ1∧dθ2.

where Ω = dz1∧dz2 is the standard holomorphic volume form on C2. The volume form

on L is

volL = 2dθ1∧dθ2, (3.1.3)

hence the Lagrangian angle is

θ = θ1 +θ2 +π.

From this, it is clear that

~H = J∇θ =−
√

2
Ä

eiθ1,eiθ2
ä
,

which verifies that LCl is a self-shrinker. Satisfying (3.1.2) implies that the Clifford torus

attains a finite-time singularity at the origin, with type I blow-up given by LCl.

There are two classes of J-holomorphic discs with Maslov index 2 with boundary

on LCl, each occurring in an S1-family. They are

uψ

1 : z 7→
√

2
(
z,eiψ)

uψ

2 : z 7→
√

2
(
eiψ ,z

)
,

We denote the former class by α1 ∈H2(C2,LCl), and the latter class by α2 ∈H2(C2,LCl).

In the equivariant description, the profile curve γ(s) = 2eis bounds a Maslov 4 disc in

the class α1 +α2. It is immediately clear from observation that the Clifford torus is

monotone.
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3.2 Instability of the Clifford torus
In this section, we discuss the first part of Theorem 1.2.1, namely the following result:

Theorem 3.2.1. Let LCl ⊂ S3(2) ⊂ C2 be a self-shrinking Clifford torus. Then there

exists a Ck-small Hamiltonian perturbation of LCl such that the flow achieves a type II

singularity.

As commented above, this result was already known ( [18], [34]) for large Hamil-

tonian perturbations.

We review the method used in [16]. We find by delicate but direct calculation

that the F-functional takes a local maximum at the self-shrinking Clifford torus LCl

with respect to a particular Hamiltonian variation. We then upgrade this result to an

entropy calculation, showing that LCl is entropy-unstable and hence any perturbation in

this direction cannot converge to a Clifford torus after rescaling.

Consider the equivariant description, where LCl is given as an S1-bundle over a

profile curve γ(s)∈C. It is clear from this description that any Hamiltonian perturbation

γ ′ of γ in C lifts to give a Hamiltonian perturbation of LCl as a torus in C2. This follows

since any Hamiltonian perturbation of γ preserves the area of the disc class α1 +α2

interior to γ , and only disturbs the Maslov 0 class α1−α2. Thus the monotonicity is

preserved with the same constant.

Thus we consider the Hamiltonian perturbation generated by the one-parameter

subgroup As of SL(2,R) given by

As =

Ñ
es 0

0 e−s

é
.

Explicitly, the perturbation is then

LAs = {2(e
s cosφ + ie−s sinφ)(cosα,sinα) : φ ,α ∈ R},

or in terms of the product torus

LAs = {
√

2(coshseiθ1 + sinhse−iθ2,sinhse−iθ1 + coshseiθ2) : θ1,θ2 ∈ R}.
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We emphasise that both circles in the product torus (corresponding to the disc classes

α1,α2) do not change size under this perturbation. Instead, the perturbation is a squash-

ing in a Maslov 0 direction.

We show that LAs does not converge to the self-shrinking Clifford torus under

rescaled mean curvature flow. We first recall the definitions and basic properties of

the F-functional and the entropy λ . We follow [12].

For a compact immersion X : L→ C2, we define the F-functional

F(X ,x0, t0) =
1

4πt0

∫
L

exp

Ç
−|X− x0|2

4t0

å
volL,

and the entropy as

λ (X) = sup
(x0,t0)∈C2×R+

F(X ,x0, t0).

The entropy has the following properties:

Lemma 3.2.2.

(a) The entropy is invariant under translations, dilations and rotations.

(b) The entropy is non-increasing under mean curvature flow and rescaled mean cur-

vature flow.

(c) The critical points of the entropy are (after potential translation and dilation) self-

shrinkers.

Here rescaled mean curvature flow is the standard parabolic rescaling about any

space-time point.

For a self-shrinker X , we have that

λ (X) = F(X ,0,1).

It is therefore straightforward to compute the entropy of the Clifford torus.
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Lemma 3.2.3. For the Clifford torus X : L→ C2, we have

λ (X) =
2π

e
= 2.311 . . .

Proof. We compute

λ (X) =
1

4π

∫
L

exp
Å
−1

4
|X |2
ã

volL =
1

4π

∫ 2π

0

∫ 2π

0
2e−1 dθ1 dθ2 =

4π2

2πe
=

2π

e
,

where we used |X |2 = 4 and (3.1.3).

We now proceed by estimating the value of the F-functional along the variation As

described above. The calculations in this section can be found in greater detail in [16],

though significant portions of them were performed in Mathematica.

Proposition 3.2.4. For s near 0, we have that

F(X(s),0,1)−F(X(0),0,1) =−4π

9e
s6 +O(s8).

Hence F(X(s),0,1) has a strict local maximum at s = 0.

Proof. Recall that

X(s) =
√

2(coshseiθ1 + sinhse−iθ2,sinhse−iθ1 + coshseiθ2). (3.2.1)

It follows by direct calculation that

F(X(s),0,1) =
1

2πe

∫ 2π

0

∫ 2π

0
I(s)dθ1 dθ2,

where

I(s) =
»

cosh2 2s− sinh2 2scos2(θ1 +θ2)e1−cosh2s−sinh2scos(θ1+θ2).

We notice that I(s) is a real analytic function of s. Therefore, we seek a power series

expansion about s = 0. We have that I(0) = 1, which verifies Lemma 3.2.3. Further
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calculation reveals that the integral of the k-th derivative I(k)(0) is equal to 0 for k ≤ 5,

and that ∫ 2π

0

∫ 2π

0

I(6)(0)
6!

dθ1 dθ2 =−
8
9

π
2.

The integral of I(7)(0) is also 0, so the result follows.

We now consider the value of the F-functional for LAs for space-time centres near

(0,1).

Proposition 3.2.5. Let X(s) denote the position of LAs as in (3.2.1). Then there exists

s0 > 0 and r0 > 0 such that whenever (x0, t0) lies in the set

S = {(x0, t0) ∈ C2×R+ : |x0|2 +2|t0−1|2 ≤ r2
0},

and |s| ≤ s0 we have

F(X(s),x0, t0)≤ F(X(0),0,1)− π

4e
(|x0|2 +2|t0−1|2)− 2π

9e
s6.

Proof. The proof is similar to that of Proposition 3.2.4. This time, we have

F(X(s),x0, t0) =
1

2πe

∫ 2π

0

∫ 2π

0
I(s,x0, t0)dθ1 dθ2,

for x0 ∈ C2 and t0 ∈ R+, where

I(s,x0, t0) =
1
t0

»
cosh2 2s− sinh2 2scos2(θ1 +θ2)e

1− |X(s)−x0|
2

4t0 .

Pick any (ξ ,τ) ∈ C2×R with |ξ |2 +2|τ|2 = 1, and define

f (r,s) =
∫ 2π

0

∫ 2π

0
I(s,rξ ,1+ rτ)dθ1 dθ2.

Performing a Taylor expansion using (3.2.1) (and with the help of Mathematica) around

(r,s) = (0,0) yields

f (r,s) = f (0,0)−π
2r2− 8

9
π

2s6 +O(r2s)+O(r3)+O(s7).
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We can thus choose r0,s0 > 0 sufficiently small such that for |r| ≤ r0 and |s| ≤ s0 we

have

f (r,s)≤ f (0,0)− 1
2

π
2r2− 4

9
π

2s6.

Since this estimate is uniform in (ξ ,τ), this yields the desired statement.

We can now combine Propositions 3.2.4 and 3.2.5 to give our first key result.

Theorem 3.2.6. For s near 0 we have that

λ (X(s))≤ λ (X(0))− 2π

9e
s6.

Hence, the entropy λ (X(s)) has a local maximum at s = 0.

Proof. Recall that Huisken’s monotonicity formula [25] implies that for a compact self-

shrinker L, the entropy λ (L) is uniquely attained at (0,1): Since the flow is self-similar,

we have that

λ (L) = F(L,0,1).

Now assume that there is a point (x0, t0) 6= (0,1) such that λ (L) = F(L,x0, t0). The

monotonicity formula then implies that L is also a self-shrinker with respect to the point

(x0, t0−1). So t0 = 1. Furthermore, the monotonicity formula implies that the entropy is

attained on any point along the line containing x0 and 0, and thus L is a product L′×R.

This contradicts the compactness of L, so the entropy is attained uniquely at (0,1).

To apply Proposition 3.2.5, it remains to show that the entropy of X(s) is attained

in the set S for sufficiently small |s|< s0. We can choose s0 such that X(s) has arbitrarily

small C1-norm as an exponential graph over X(0).

Now consider L′ given as an exponential normal graph of U ∈C∞(NL). We choose

ε0 > 0 and assume

‖U‖C1 ≤ ε ≤ ε0. (3.2.2)

Note that this implies that for ε0 = ε0(L)> 0 sufficiently small, given any η0 > 0, there

exists a δ0 = δ0(L,η0)> 0 such that

F(L′,x0, t0)≤ 1+η0 (3.2.3)
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for all x0 ∈ C2, 0 < t0 < δ0. We can choose η0 =
1
4(λ (L)−1)> 0 (as L is not a plane).

Since the entropy of L is uniquely attained at (0,1), given any r > 0, there exists 0 <

η < η0 such that

F(L,x0, t0)< λ (L)−3η

for all |x0| > r and (t0−1)2 > r. Using (3.2.3) we see that we can thus choose ε suffi-

ciently small in (3.2.2) such that

F(L′,x0, t0)< λ (L)−2η

for all |x0| ≥ r and (t0−1)2 ≥ r and

F(L′,0,1)≥ λ (L)−η .

We deduce that the entropy of L′ is attained in the set

{(x0, t0) ∈ C2×R+ : |x0| ≤ r,(t0−1)2 ≤ r}.

Applying this to our set-up, we see that for s small, the entropy λ (X(s)) is only attained

at (possibly non-unique) points (xs, ts) with the property (xs, ts)→ (0,1) as s→ 0. The

claimed result then follows directly from Proposition 3.2.5.

Theorem 3.2.7. For any s > 0, the torus X(s) does not converge to the self-shrinking

Clifford torus after rescaling.

Proof. Note the symmetry of X(s) implies there is only one possible self-shrinking Clif-

ford torus to converge to after rescaling, namely X(0). Entropy is non-increasing under

(rescaled) mean curvature flow and the entropy λ (X(s)) is strictly less than λ (X(0)) for

any s > 0, so we see X(s) cannot converge to X(0) after rescaling.

3.3 Stability of the Clifford torus
In contrast to the previous section, we find the following:
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Theorem 3.3.1. Any Hamiltonian deformation of LCl restricted to the 3-sphere S3(2)

forms a type I singularity at the origin with type I blow-up given by LCl.

We call Lagrangians in Cn lying in the (2n−1)-sphere of radius r spherical.

The proof relies on a result relating Lagrangian mean curvature flow of spherical

Lagrangian tori to Lagrangian mean curvature flow of Lagrangian tori in complex pro-

jective space. The result was first explored by Castro–Lerma–Miquel [9].

Proposition 3.3.2. Let n > 1. A spherical Lagrangian torus L = T n ⊂Cn is normalised

monotone if and only if L/S1 = T n−1 is a monotone Lagrangian torus in CPn−1, where

the quotient is the Hopf fibration S2n−1/S1 = CPn−1.

Proof. Suppose L is spherical Lagrangian. Then the normal vector field N to S2n−1⊂Cn

is normal to L at every point, so JN is tangent to L. The integral curves of JN are Hopf

circles by definition, so L is foliated by Hopf circles. Hence the quotient L/S1 is well-

defined.

The Hopf fibration f : S2n−1→CPn−1 induces an isomorphism between the relative

homology groups

f̃ : Hk(S2n−1,L)→ Hk(CPn−1,L/S1)

for all k. Furthermore, for n > 1, the long exact sequence of relative homology groups

for the inclusions L ⊂ S2n−1 ⊂ Cn gives an isomorphism between H2(S2n−1,L) and

H2(Cn,L). So any relative disc class on L in Cn can be represented by a disc class

in S2n−1.

The Fubini–Study form ωCPn−1 on CPn−1 is induced from the standard symplectic

form ω on Cn by the Hopf fibration, so up to choosing the correct scaling on S2n−1, f̃

preserves the monotone constant.

Lemma 3.3.3. The condition that a Lagrangian is spherical is preserved under mean

curvature flow. If F0(L) has radius R0 = |F0(L)|, then Ft(L) has radius Rt = |Ft(L)| =»
R2

0−2nt.

Proof. Recall that for mean curvature flow of k-dimensional submanifolds of Rm,

spheres of radius R(t) =
√

R2−2kt are barriers on the inside and outside. We claim
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this implies spherical Lagrangians with initial radius R0 remain spherical with radius»
R2

0−2nt. Indeed, suppose this is not the case. Then we can find some time t ′ > 0,

ε 6= 0 and point p ∈ L such that the radius at (p, t ′) is
»

R2
0−2nt ′+ ε . Without loss of

generality, assume ε > 0. Then the sphere of radius R(t) =
»

R2
0 + ε2/4−2nt does not

intersect Ft(L) for all time, yet at t = t ′, R(t ′)<
»

R2
0−2nt ′+ ε , a contradiction.

Let F0 : L→ Cn be a spherical Lagrangian with radius R0. Then Ft(L) is spherical

for all time by Lemma 3.3.3. Thus we can write Ft(L) = 1√
R2

0−2nt
F̃t(L) for embeddings

F̃t : L→ S2n−1(1) of L into the unit sphere. Define Gτ(t)(L/S1) = f (F̃t(L)) for some

function τ(t) to be determined.

We claim that we can choose τ(t) such that the flow Gτ is a mean curvature flow in

CPn−1. As in [9], we observe the following:

1. The mean curvature vector ~H of Ft(L)⊂Cn is related to the mean curvature vector

H̄ of F̃t(L)⊂ S2n−1(1) by

~H =
1»

R2
0−2nt

H̄− 2»
R2

0−2nt
Ft .

2. Since f is a Riemannian submersion, the mean curvature vector H̃ of F̃t(L) ⊂

S2n−1(1) is related to the mean curvature vector H̄ of f (F̃t(L)) ⊂ CPn−1 by H̃ =

H̄∗ where H̄∗ is the horizontal lift of H̄ under f .

Therefore, choosing

τ(t) =
1

2n
log

Ç
R2

0−2nt
R2

0

å
implies that Gτ : L/S1→ CPn−1 is a mean curvature flow.

We summarise the above as follows:

Proposition 3.3.4. Mean curvature flow of spherical monotone Lagrangians in Cn in-

duces a mean curvature flow of Lagrangians in CPn−1 by the Hopf fibration, and the

converse also holds.

Suppose we have a spherical Lagrangian F0 : L→ Cn with radius R0 as the ini-

tial condition. Then singularities of Ft(L) before time R2
0/2n correspond to finite-time

singularities of Gτ(L/S1).
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If Gτ(L/S1) converges as varifolds to a minimal Lagrangian in CPn−1 in infinite

time, then F̃t(L) converges as varifolds to a Lagrangian submanifold of Cn, minimal as

a submanifold of S2n−1(1). Furthermore, the rescaling F̃t is equivalent to the standard

parabolic rescaling, so the same holds for the parabolic rescaling.

Returning to the case of Clifford tori in C2, we see that Theorem 3.3.1 follows

directly from Proposition 3.3.4 and the Proposition 2.2.7.
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Lagrangian mean curvature flow in the

complex projective plane

4.1 Lagrangian mean curvature flow in Fano manifolds
We now switch attention to Lagrangian mean curvature flow in Kähler–Einstein mani-

folds with positive Einstein constant κ > 0. We call these Fano manifolds (though we

remark that this definition of Fano manifolds is somewhat non-standard in the literature),

and the fundamental example is complex projective space CPn with the Fubini–Study

metric which has κ = 2(n+1).

Recall Proposition 2.2.7 on curve-shortening flow on the sphere. We saw that

monotone curves did not attain type I singularities: heuristically, any type I singular-

ity would require the collapsing of one of the disc classes, which is prohibited by the

monotone condition. We now generalise this to higher dimensions. First, we can clas-

sify all zero-Maslov self-shrinkers that may arise as a type I blow-up by a result of

Groh–Schwarz–Smoczyk–Zehmisch [18]:

Theorem 4.1.1. If F : Ln→ Cn is a zero-Maslov Lagrangian self-shrinker arising as a

result of a type I blow-up, then L is a minimal Lagrangian cone.

This follows directly from [18, Theorem 1.9], noting that type I blow-ups have

bounded area ratios.

Since type I blow-ups are smooth, embedded self-shrinkers for type I singularities,

this implies there are no zero-Maslov type I blow-ups for type I singularities. Since
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any type I model is locally symplectomorphic to the standard unit ball, this excludes the

possibility of type I singularities for monotone Lagrangians:

Theorem 4.1.2. Let Ft : Ln → M2n be a monotone Lagrangian mean curvature flow,

κ 6= 0. Then Ft does not attain any type I singularities.

Proof. Suppose for a contradiction that Ft attains a type I singularity at time T . Any

sequence ηi→ ∞ subsequentially defines a type I blow-up

F̃s := lim
i→∞

F̃ηi
s = lim

i→∞
ηiFT+η

−2
i s.

Since the singularity is type I, F̃(L) := F̃−1(L) is a non-planar embedded Lagrangian

self-shrinker, and hence by Theorem 4.1.1 has non-zero Maslov class.

Let D̃ ∈ H2(Cn, F̃(L)) have µ(D̃) > 0. The convergence of F̃s to a type I blow-up

is smooth and the Maslov class is topological, so for all sufficiently large i, there exists

D̃i ∈H2(Cn, F̃ηi
−1) with µ(D̃i) = µ(D̃)> 0 and D̃i→ D̃ as i→∞. Furthermore, D̃i are the

images under the parabolic rescaling of discs Di = η
−1
i D̃i ∈ π2(W,FT−η

−2
i
(L)). Since L

is monotone and the Maslov class is invariant under rescaling,

∫
Di

ω =
π

κ
µ(D̃i) =

π

κ
µ(D̃)> 0

for all i, but

lim
i→∞

∫
Di

ω = lim
i→∞

∫
η
−1
i D̃i

ω = 0,

a contradiction.

This theorem is the positive curvature equivalent of the result of Wang [49] show-

ing that almost-calibrated Lagrangians do not attain type I singularities in Calabi–Yau

manifolds. This strengthens the perspective that monotone submanifolds are the correct

class of submanifolds to study to find positive curvature analogues of the Thomas–Yau

conjecture. The rest of the thesis will be devoted to exploring what a Thomas–Yau

conjecture looks like in the prototypical Fano surface CP2.
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4.2 Lagrangian tori in CP2

We study Lagrangian mean curvature flow of tori in CP2 with the Fubini–Study met-

ric. Recall that as in Example 2.1.3, this is a Kähler–Einstein manifold with Einstein

constant κ = 6. The Kähler form induced by the Hopf fibration is unique up to symplec-

tomorphisms.

The Clifford torus

LCl = {[x : y : z] : |x|= |y|= |z|= 1} ⊂ CP2

is a Lagrangian submanifold. It is minimal and monotone. The relative homology class

H2(CP2,LCl) is generated by 3 Maslov 2 J-holomorphic discs:

u0 : w 7→ [w : 1 : 1]

u1 : w 7→ [1 : w : 1]

u2 : w 7→ [1 : 1 : w].

where w ∈ D, the unit disc.

A natural question to ask is whether the Clifford torus is the unique monotone

Lagrangian torus in CP2 up to Hamiltonian isotopy. The answer is definitively no.

Chekanov–Schlenk [40] prove the existence of a monotone torus called the

Chekanov torus LCh which is Lagrangian-isotopic to LCl but not Hamiltonian-isotopic.

Until more recently, the question of whether there were other monotone tori was open,

but in a pair of papers Vianna ( [47], [48]) showed the existence of a countably infinite

family of exotic monotone Lagrangian tori, with no two Hamiltonian isotopic. We re-

view Vianna’s construction, which relies on the machinery of almost-toric manifolds, in

the sequel.

4.2.1 Almost-toric manifolds

Definition 4.2.1. Let (M2n,ω) be a compact symplectic manifold, and let G act on M

by an effective Lie group action. The action is called Hamiltonian if the vector field Xξ

generated by an element ξ of the Lie algebra g is given by the symplectic gradient X fξ
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of a smooth function fξ on M. 1

A moment map for a Hamiltonian action is a map µ : M→ g∗ defined by

µ(x)(ξ ) = fξ

In the case that G = T n, M is called a toric manifold, and the projection µ : M→Rn

is called a toric fibration, since the pre-image of each point is a T m-torus with 0≤m≤ n.

The following theorem is fundamental to toric geometry. The first result is due to

Atiyah [3] and Guillemin–Sternberg [19], and the second due to Delzant [13].

Theorem 4.2.2.

1. Let M be a compact toric manifold. Then the image µ(M) of µ is a convex poly-

tope in Rn.

2. The image of the moment map determines M, the symplectic structure and the

action.

Note that ω vanishes on the fibre above any point p of a toric fibration, and hence

the fibre is Lagrangian when it is n-dimensional.

By way of example, and also since it is the object of study for the rest of the thesis,

we consider the case of CP2 in more detail. Let [x : y : z] be homogeneous coordinates

on CP2 and consider the moment map

µ([x : y : z]) =
1

|x|2 + |y|2 + |z|2
Ä
|x|2, |y|2

ä
. (4.2.1)

The image µ(CP2) is a triangular polytope with vertices at (0,0), (1,0) and (0,1). The

fibre above any interior point of the triangle is a Lagrangian torus. Of particular note is

the fibre above the barycentre (1/3,1/3), which is a monotone, minimal Clifford torus.

The fibration is singular at the edges and vertices; the fibre over an edge point is a

circle, and the fibre over a vertex is a single point. The pre-image of each edge of the

polytope are holomorphic spheres in CP2 (the “lines at infinity”).
1Recall that the symplectic gradient of f is defined to be the vector field X f satisfying ω(X f , ·) = d f ,

although here sign convention differs amongst authors.
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Symington–Leung [29] define an extension of toric manifolds to include a wider

range of singular points. Restricting our attention to 4-manifolds for clarity, let f :

M4→ B2 be a fibration of a symplectic manifold. Then M is called almost-toric if for

any point p in M there exists a Darboux neighbourhood U of p with local coordinates

(z j) = (x j + iy j) on U , ω = dx∧dy, such that in those coordinates f |U is given by 1 of

4 possibilities:

f |U(z1,z2) =



(x1,x2) regular point

(x1,x2
2 + y2

2) elliptic, cylindrical singularity

(x2
1 + y2

1,x
2
2 + y2

2) elliptic, toric singularity

(x1y1 + x2y2,x1y2− y1x2) nodal singularity

(4.2.2)

Remark 4.2.3.

1. The first two singularity models occur in toric fibrations, at the edges and vertices

of the base.

2. The above definition is motivated by a result from Eliasson [14], extending work

of Williamson [50], which shows that these are precisely the singularities that

occur in integrable Hamiltonian systems.

Symmington–Leung [29] consider one additional type of singularity which ap-

pears in integrable Hamiltonian systems, called hyperbolic singularities. We ig-

nore these singularities for a few reasons. Firstly, they impose a different struc-

ture on the base to nodal and elliptic singularities, causing the base to become

non-smoothable. Secondly, they do not seem likely as a singularity model for

Lagrangian mean curvature flow in reasonable situations.

3. The 3 singularity models in (4.2.2) are all found in Lagrangian mean curvature

flow. The first two are the self-shrinking Lagrangian cylinder and Clifford torus

respectively, and the last is the Lawlor neck singularity observed by Neves [33]

and constructed explicitly by Wood [51].

4. One of the key features of this definition is that the moment map has been forgot-
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ten, leaving instead the purely topological consideration of the Lagrangian fibra-

tion.

4.2.2 Vianna’s exotic tori in CP2

Vianna constructs in [48] an infinite family F of monotone Lagrangian tori in CP2, with

no two tori Hamiltonian isotopic. We present some details of this construction here as it

forms the main motivating example for the rest of the thesis.

The first member of the family F is the Clifford torus

LCl = {[x : y : z] : |x|= |y|= |z|= 1},

which is realised as the barycentric fibre in the toric fibration given by µ in (4.2.1). From

here, Vianna constructs the next member of F by a topological procedure known as a

mutation:

1. Introduce a nodal fibre at one of the corners by a nodal trade. The corner of the

base diagram is now a circle and the fibre above the cross is a Lagrangian torus

pinched to create a nodal singularity. The barycentric fibre is still a Clifford torus,

and the metric is still the Fubini–Study metric.

2. Rescale a neighbourhood of the line at ∞ (i.e. the CP1 given by {[x : y : 0] : x,y ∈

C}) until the barycentre has passed over the nodal fibre. The barycentre is now a

Chekanov torus and the metric is no longer the Fubini–Study metric.

3. Isotope the metric back to the Fubini–Study metric using Moser’s trick. The

barycentre remains a Chekanov torus.

Items 2 and 3 together are called a nodal slide, and the full mutation is illustrated

in Figure 4.1.

Vianna then iterates this procedure, introducing new nodal fibres at different corners

of the moment polytope. Since the two corners (1,0) and (0,1) are the same after the

first mutation, the Chekanov torus LCh becomes a unique new torus L(1,4,25). Iterating

further from this point generates two new tori every time. Vianna indexes this family by
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Figure 4.1: The mutation procedure. The fibre above the barycentres (red dots) are Clifford tori
on the left-hand side, and Chekanov tori on the right-hand side.

· · ·

L(1,25,169)

· · ·

LCl LCh L(1,4,25)

· · ·

L(4,25,841)

· · ·

Figure 4.2: Vianna’s exotic tori, indexed by Markov triples (a2,b2,c2).

integer triples (a2,b2,c2) with a2 +b2 +c2 = 3abc, which are known as Markov triples,

and shows that a torus L(a2,b2,c2) is realised as the barycentric fibre of a degeneration of

the weighted projective space CP2(a2,b2,c2), though we shall not use this perspective

in this thesis. We focus for the rest of the thesis only on the first level of this procedure,

which has been known since the work of Chekanov–Schlenk [40].

We can distinguish tori of Clifford-type LCl from tori of Chekanov-type LCh by

counting J-holomorphic disc classes in H2(CP2,L). Following the results of Auroux [4],
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we have that there are 3 classes of Maslov 2 discs with boundary on LCl. Denote by α1

the disc class w 7→ [w : 1 : 1], and by α2 the disc class w 7→ [1 : w : 1]. Then H2(CP2,LCl)

is generated by {α1,α2,Q−α1−α2} where Q = [CP1] is the hyperplane class.

On the other hand, consider the Chekanov torus in C2 = CP2−{z = 0} given by

LCh =
{(

γ(s)eiα ,γ(s)e−iα) : s,α ∈ R
}
,

where γ(s) ∈ C is a closed curve not enclosing the origin. By an abuse of notation, let

α denote the disc class of a disc with boundary given by the α coordinate, and by β

the disc class given by the s coordinate. Then H2(CP2,LCh) is generated by {α,β ,Q}.

However, the class α does not contain any holomorphic representatives - this is precisely

the same reason the corresponding class can collapse for the Clifford torus LCl in C2 as

demonstrated in Chapter 3. In fact, the Maslov 2 classes on LCh are precisely

{β ,Q−2β +α,Q−2β ,Q−2β −α} ,

each occurring with moduli space of holomorphic discs of dimension 1 except for the

Q−2β class which has dimension 2.

We adopt the following terminology for tori in CP2, which we will attempt to follow

whenever there could be confusion for the rest of the thesis:

1. We call the torus L0
Cl =

{
[x : y : z] : |x|2 = |y|2 = |z|2

}
, and any rotation of it by an

element A ∈ PU(3), the holomorphic isometry group of CP2, a minimal Clifford

torus.

2. We call any torus in CP2 a Clifford-type torus if it has the same J-holomorphic

structure as L0
Cl, i.e. if there is a Lagrangian isotopy to the flat Clifford torus

inducing an isomorphism on the relative homology.

3. We call any monotone Clifford-type torus a Clifford torus and denote it by LCl.

We extend this convention in the natural way to Chekanov tori (though we don’t know

if there are any minimal exotic tori.)
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Figure 4.3: An example of a zero-object singularity - A Lagrangian plane attaining a type II
singularity.

4.3 Clifford and Chekanov tori in Lefschetz fibrations
Our goal is to study the behaviour of Clifford and Chekanov tori in CP2 under mean

curvature flow, but this presents a number of difficulties. The main problem is the

class of potential singularities is too great. Heuristically, singular behaviour is local

and since CP2 looks flat on sufficiently small scales, we expect that a priori any singular

behaviour observed for zero-Maslov Lagrangians in C2 should also occur for mono-

tone Lagrangians in CP2. In particular, zero-object singularities2 like those studied in

Neves [33, Figure 3] (Figure 4.3) can occur and currently we have little understanding

about the nature of these singularities. A second issue is that there is no control over

where the singularity happens and what Lagrangian cone the type I blow-up produces,

even under the assumption that we obtain Lawlor neck singularities. Since these are

general problems in Lagrangian mean curvature flow, we choose a symmetric subclass

of Lagrangians in CP2 which cannot have the zero-object singularities and where we

have strong control over the location and type of the singularities.

2As a note on the terminology: The obvious surgery at such a singularity bubbles off an immersed
Lagrangian sphere with a single transverse self-intersection. Since such a sphere represents a zero object
in the Fukaya category, it seems sensible to call these singularities which are collapsing zero-homotopic
curves zero-object singularities. See Joyce [27, Section 3.7] for a more detailed description.
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We consider two rational maps CP2→ CP1. The first is the Lefschetz fibration

f ([x : y : z]) = [xy : z2]

in the complement of the anti-canonical divisor D = {(xy− z2)z = 0}. The second is the

projection

π([x : y : z]) = [y : z].

This extends to a foliation of CP2 by holomorphic spheres each intersecting at a single

point [0 : 0 : 1] with intersection number 1.

We call a subset U ⊂ C point-symmetric if x ∈ U if and only if −x ∈ U . For a

point-symmetric curve γ(s) ∈ C, define

L0
γ =

{[
γ(s)eiα : γ(s)e−iα : 1

] ∣∣ α ∈ R,s ∈ R
}

and notice that since γ is point-symmetric, f (L0
γ) = {[γ(s)2 : 1] : s ∈ R} is an embedded

curve in CP1 if γ(s) is embedded in C. We will also allow unions of two smooth non-

intersecting curves such that the union is point-symmetric. By an abuse of notation, we

refer to such a curve as γ(s) where the parameter s is now allowed to vary over two

intervals or circles.

First, we identify various Lagrangians in this format. Let γ(s) = s ∈ R⊂ C. Then

{[seiα : se−iα : 1]}

lies above γ and is compactified by the circle [eiα : e−iα : 0] at infinity. The resulting

manifold is

L0
R := {[seiα : se−iα : 1]}∪{[eiα : e−iα : 0]}= {[1 : e−2iα : re−iα ]}∪{[0 : 0 : 1]}

or equivalently, using the substitution s = cotφ ,

L0
R = {[cosφeiα : cosφe−iα : sinφ ] : φ ∈ [0,π/2],α ∈ R}.
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Note that L0
R is fixed under the anti-symplectic involution X : [x : y : z] 7→ [ȳ : x̄ : z̄], hence

is isomorphic to RP2. The same applies for any other line through the origin in C.

The curve γr(s) = reis lifts to a Lagrangian torus of Clifford-type, which is mono-

tone and minimal if and only if r = 1. Furthermore, any point-symmetric closed curve

enclosing the origin lifts to a torus of Clifford-type, monotone if and only if the symplec-

tic area contained is equal to 4π/6 = 2π/3. This follows from the Cieliebak–Goldstein

formula (2.2.3), κ = 6 and the fact that the disc is Maslov 4. Any closed circle γ not en-

closing the origin and its point-symmetric image−γ together lift to a torus of Chekanov-

type (provided γ does not intersect −γ), monotone if and only if the area contained is

2π/6 = π/3. The fact that these Lagrangians are Clifford and Chekanov respectively

can be checked by observing their images under the Lefschetz fibration f and comparing

with the standard definitions in Auroux, for instance, [4].

We will distinguish between Clifford tori and Chekanov tori by their intersections

with real projective planes RP2. Immediately we observe that any closed curve γ en-

closing the origin intersects any line l through the origin in at least two points, hence

any equivariant Clifford torus Lγ
∼= LCl intersects Ll

∼=RP2 in at least one circle. Indeed,

this result is generalisable: LCl is non-displaceable from RP2, as can be shown in multi-

ple different ways (see for instance [5] or [15]). Indeed, Amorim and Alston [1] give a

lower bound of 2 for the number of intersections between a Clifford torus and RP2. On

the other hand, one can easily observe that there exists a pair of point-symmetric circles

γ(s)∈C each containing a disc of area 2 and not intersecting the imaginary axis iR∈C.

Hence Chekanov tori are displaceable from RP2.

In the sequel, it will be useful to consider cones of real projective planes intersecting

our flowing Lagrangian tori, so we make the following definition:

Definition 4.3.1. Denote by lb the line {seib : s ∈ R} ⊂ C. For a ∈ (0,π), let Cb
a be

a cone of opening angle a about lb, i.e. the union of lb−a/2 and lb+a/2. We say that a

point-symmetric pair of closed curves γ is contained in Cb
a if arg(γ(s)) ∈ (b− a/2,b+

a/2)∪ (−b−a/2,−b+a/2) for all s.

Finally, we define the symmetry condition we will be using.
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Definition 4.3.2. A Lagrangian Lγ is called equivariant if γ is point-symmetric and Z2-

symmetric with respect to the real axis.

The point-symmetry is an S1-symmetry on the level of Lγ , so the equivariance con-

sidered is an (S1×Z2)-symmetry. The main reason for this symmetry condition is to

greatly restrict the variety of singularities that can occur. Specifically, we want to have

only Lawlor neck singularities occurring at the origin.

4.4 The equivariant mean curvature flow
Before proceeding to the proofs of the main theorems, we calculate the evolution equa-

tion satisfied by the profile curve γ under mean curvature flow. Despite being the gov-

erning equation for the rest of the results in the paper, we do not need the precise for-

mulation frequently: it is only necessary for the explicit construction of various barriers.

However, the derivation of the evolution equation for γ is interesting in its own right

since we calculate the mean curvature of Lγ by a novel method.

Recall the fibration {Lα} by Clifford-type tori given by the fibres of the moment

map

µ([x : y : z]) =
1

|x|2 + |y|2 + |z|2
Ä
|x|2, |y|2

ä
.

The equivariant fibres are

Lr = {Lreiφ : r > 0}

and for the rest of this thesis, we denote by Ω the holomorphic volume form relative to

{Lα}. We first calculate the mean curvature of Lr, then we calculate the mean curvature

of any other equivariant torus Lγ by calculating the relative Lagrangian angle between

Lγ and Lr using Theorem 1.2.3. Recall that Theorem 1.2.3 implies that the relative

Lagrangian angle θ = θrel defined by Ω satisfies

HLγ
(X) = dθrel(X)+HLr(πX)

where π is the projection onto the tangent bundle of Lr.

We calculate the mean curvature 1-form of Clifford tori Lr indirectly. The curve
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γ(s) = reis bounds a J-holomorphic disc which lifts to CP2 giving a disc

u : z 7→ [rz : rz : 1]

with boundary on Lr of Maslov index 4. Cieliebak–Goldstein gives

−
∫

∂D
HLr = 6

∫
D

ω−4π

since κ = 6 for CP2 with the Fubini–Study metric. We calculate
∫

D ω directly. We have

that in radial coordinates x = r1eiθ1 , y = r2eiθ2 , the Kähler form is

ω =
1(

1+ r2
1 + r2

2
)2

(
r1(1+ r2

2)dr1∧dθ1− r1r2
2dr1∧dθ2

− r2
1r2dr2∧dθ1 + r2(1+ r2

1)dr2∧dθ2

)
,

so ∫
D

ω = 2π

∫ r

0

2r̃
(1+2r̃2)2 dr̃ = π

2r2

1+2r2 . (4.4.1)

Hence using Cieliebak–Goldstein, we have

−
∫

∂D
HLr = 6π

2r2

1+2r2 −4π = 4π

Ç
r2−1

1+2r2

å
.

Note that r = 1 is the monotone flat Clifford torus. Then by the symmetry of the tori Lr,

we have that

HLr =−2

Ç
r2−1

1+2r2

å
ds (4.4.2)

as a 1-form on Lr.

Next we calculate the relative Lagrangian angle. If γ(s) = r(s)eiφ(s), then Lγ is

given by the embedding

Fγ : (s,α)→
î
r(s)eiφ(s)eiα : r(s)eiφ(s)e−iα : 1

ó
,
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so the tangent space to Lγ is spanned by

∂Fγ

∂ s
=
Ä(

r′+ irφ
′)eiφ eiα ,

(
r′+ irφ

′)eiφ e−iα
ä

∂Fγ

∂α
=
Ä

ireiφ eiα ,−ireiφ e−iα
ä

where we have identified the tangent space of CP2 in the coordinate patch where z = 1

with C2 in the obvious way. Note that

∂r1 = (eiφ eiα ,0)

∂r2 = (0,eiφ e−iα)

∂θ1 = (ireiφ eiα ,0)

∂θ2 = (0, ireiφ e−iα)

so

∂Fγ

∂ s
= r′(∂r1 +∂r2)+φ

′(∂θ1 +∂θ2)

∂Fγ

∂α
= ∂θ1−∂θ2

and hence

ω

Å
∂Fγ

∂ s
,
∂Fγ

∂α

ã
= ω (∂r1 +∂r2,∂θ1−∂θ2) = 0,

which verifies that Lγ is Lagrangian. Furthermore, since ∂r1 + ∂r2 and ∂θ1 − ∂θ2 are

tangent to Lr, we have

ΩLr

Å
∂Fγ

∂ s
,
∂Fγ

∂α

ã
= ΩLr

Å
−r−1r′J∂φ +φ

′
∂φ ,

∂Fγ

∂α

ã
,

where ∂φ = ∂θ1 + ∂θ2 and we have used J∂θi = −ri∂ri . Since ∂Fγ

∂α
is tangent to Lr, the

Lagrangian angle θ relative to ΩLr is given by

θ = arg
Ä

φ
′− ir′r−1

ä
=− tan−1

Å
r′

rφ ′

ã



4.4. The equivariant mean curvature flow 67

and hence

dθ =
−r′′rφ ′+ r′2φ ′+ r′rφ ′′

r′2 + r2φ ′2
ds. (4.4.3)

But the Euclidean planar curvature k of γ is

k =
−r′′rφ ′+2r′2φ ′+ r′rφ ′′+ r2φ ′3

(r′2 + r2φ ′2)3/2

=

Ç
−r′′rφ ′+ r′2φ ′+ r′rφ ′′

(r′2 + r2φ ′2)
+φ

′
å

1√
r′2 + r2φ ′2

(4.4.4)

We have that the projection of ∂Fγ

∂ s onto Lr is

π

Å
∂Fγ

∂ s

ã
=

ω

(
∂Fγ

∂ s ,J
∂Fr
∂ s

)
ω

Ä
∂Fr
∂ s ,J

∂Fr
∂ s

ä ∂Fr

∂ s
= φ

′∂Fr

∂ s

so we are led to conclude that

HLr

Å
π

Å
∂Fγ

∂ s

ãã
=−2

Ç
r2−1

1+2r2

å
φ
′. (4.4.5)

Combining the above equations, we obtain

HLγ
= dθ +HLr(π(·)) =

Ç
k
»

r′2 + r2φ ′2−φ
′−2

Ç
r2−1
1+2r2

å
φ
′
å

ds

=

Ç
k
»

r′2 + r2φ ′2 +

Ç
1−4r2

1+2r2

å
φ
′
å

ds.

Hence we have that

ω

Å
∂Fγ

∂ s
, ~HLγ

ã
= k
»

r′2 + r2φ ′2 +

Ç
1−4r2

1+2r2

å
φ
′,

but

ω

Å
∂Fγ

∂ s
,J

∂Fγ

∂ s

ã
= ω

Ä
r′(∂r1 +∂r2)+φ

′(∂θ1 +∂θ2),r
′r−1(∂θ1 +∂θ2)− rφ

′(∂r1 +∂r2)
ä

=
Ä

r′2r−1 + rφ
′2
ä

ω (∂r1 +∂r2,∂θ1 +∂θ2)
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= 2
r′2 + r2φ ′2

(1+2r2)2 .

So we conclude that

~HLγ
=

1
2

Ä
1+2r2

ä2
Ç

k+

Ç
1−4r2

1+2r2

å
φ ′√

r′2 + r2φ ′2

å
DFγ(ν)

where ν is the Euclidean normal to γ in C. Since 〈γ,ν〉 = −r2φ ′/|γ ′|, we have that the

mean curvature flow of Fγ in CP2 induces an equivariant flow on γ given by

∂γ

∂ t
=

1
2

Ä
1+2r2

ä2
Ç

k−
Ç

1−4r2

1+2r2

å
〈γ,ν〉

r2

å
ν (4.4.6)

4.5 Triangle calculations using Cieliebak–Goldstein
In order to prove the main results of this thesis, we apply the generalised Cieliebak–

Goldstein theorem to certain J-holomorphic polygons with boundary on flowing La-

grangians. The most important are triangles with one vertex at the origin. Since these

triangle calculations are ubiquitous and essential in the sequel, we review the methods

involved here.

4.5.1 Maslov number for polygons

First, we interpret the Maslov number µ̃ appearing in the Theorem 2.2.4. For La-

grangians Li bounding a disc D We have that

µ̃(D) =
−1
2π

∑
i

∫
∂Di

dαi,

where αi satisfy

τ
2
Li
= eiαiτ

2
u

as in the proof of Theorem 2.2.4. Note that if Ω is a holomorphic volume form defining

Lagrangian angles θi for Li by

ΩLi = eiθi volLi

then αi = 2θi.
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In the following two examples, we calculate the Maslov number µ̃ for various J-

holomorphic curves in CP2 described by polygons in C.

Example 4.5.1. Let γ1,γ2 be curves in C lifting to equivariant Lagrangians Lγ1,Lγ2 in-

tersecting at two points p1, p2 ⊂C∗ bounding a disc u : (D,(∂D1,∂D2))→ (C,(γ1,γ2)).

For ease of notation, we denote P = u(D), and consider this both as a polygon in the

plane C and also a J-holomorphic curve in CP2.

Let us calculate µ̃(P). There are two situations to consider. On the one hand,

when P contains the origin, then the topological component of the Maslov number µ̃

is 4 since that is the Maslov class of a disc with no corners. The contribution from the

turning angles at the corner p1 is given by (−θ1(p1)+θ2(p1))/π , which is equivalent to

the difference in Euclidean Lagrangian angle between the Lagrangian planes Tp1L1 and

Tp1L2. The Euclidean Lagrangian angle difference at any point p away from the origin

is simply the angle between the curves in the plane, so we find that

µ̃(P) = 4− 1
π
(ψ1 +ψ2)

where ψi are the turning angles between Lγ1 and Lγ2 in the plane at pi. On the other

hand, when P does not contain the origin, we obtain

µ̃(P) = 2− 1
π
(ψ1 +ψ2)

in the same way.

For our second example, we now consider the case where one of the corners of P

is either the origin or infinity in CP1. For simplicity, we assume, as will be typical of

future calculations, that two of our flowing Lagrangians are parts of the minimal cones

C0
ψ .

Example 4.5.2. Let Lγ be an equivariant Lagrangian in CP2 intersecting the cone C0
ψ

at points p+, p−, see Figure 4.4, with Euclidean turning angle ξ at p+, p−. Consider

the J-holomorphic triangle P with boundary on Lγ given by the horizontal lift of the

Euclidean triangle (also denoted P) with boundary on γ , C0
ψ and vertices at 0, p+ and
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Figure 4.4: The triangles P and Q considered in Example 4.5.2

p−.

We first calculate µ̃(P). The calculation proceeds as in Example 4.5.1 with the

topological component of µ̃ equal to 2. The angle contribution at the corners p+, p− is

as above, so we have

µ̃(P) = 2− 2
π

ξ −A(ψ),

where A(ψ) is some function of the opening angle at the origin to be determined.

We could calculate this directly by calculating the difference in Lagrangian angle

between lψ/2 and l−ψ/2. For the purposes of intuition however, we calculate indirectly

using the example where γ(s) = eis is the minimal Clifford torus. We have that ξ = π/2,

so

µ̃(P) = 1−A(ψ).
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Furthermore, the area of P is given by

∫
P

ω =
ψ

2π

4π

6
=

ψ

3

since the area is 4π/6 when ψ = 2π . Since HLγ
= 0, (2.2.5) implies that

A(ψ) = 1− κ

π

∫
P

ω =
1
π
(π−2ψ) .

Since the contribution of ψ at the origin is independent of the choice of γ , we have that

µ̃(P) = 2− 2
π

ξ − 1
π
(π−2ψ) . (4.5.1)

In the important special case where ξ = π , i.e. γ is tangent to the cone C0
ψ at the points

p+ and p−, the sign of µ̃(P) is controlled by the opening angle ψ . We have that

µ̃(P) =− 1
π
(π−2ψ)

and hence µ̃(P) is negative for ψ < π/2 and positive for ψ > π/2.

In a similar way to the above, we can calculate µ̃(Q), where Q is the complement

of P in the cone C0
ψ , see Figure 4.4. Here the contribution of the angle ψ to µ̃(Q) is

B(ψ) =
1
π
(π−ψ) .

To see this, note that the area contained in the cone C0
ψ is

∫
P

ω +
∫

Q
ω =

ψ

2

so (2.2.5) implies that

µ̃(Q) = 2− 2
π
(π−ξ )− 1

π
(π−ψ) =

2
π

ξ − 1
π
(π−ψ) .
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4.5.2 Evolution equations for polygons

Since they are important in the sequel, we recall the key formulae concerning H and θ .

We have that

H = dθ +α,

where α is the 1-form HLr(π(·)), where π is projection to the tangent bundle of Lr.

Furthermore, θ defined in this way satisfies the evolution equation

∂

∂ t
θ = ∆θ +d†

α,

by the same calculation that yielded (2.2.1), and the mean curvature 1-form H satisfies

∂

∂ t
H = dd†H +κH.

Recall that for a polygon P with no corners, the Maslov number is the Maslov class

and is invariant under mean curvature flow, and so we have

∂

∂ t

∫
P

ω =− 1
κ

∂

∂ t

∫
∂P

H =− 1
κ

∫
∂P

dd†H +κH = κ

∫
P

ω−πµ(P).

It initially seems reasonable to conjecture then that for a polygon P with corners,

∂

∂ t

∫
P

ω = κ

∫
P

ω−πµ̃(P).

However, this does not hold for two reasons. Firstly, we obtain boundary terms from

integrating dd†H. Secondly, when differentiating, we must account for potential tan-

gential motion of the vertices of the polygon under mean curvature flow.

For these reasons, we only consider the evolution equations in the context of Ex-

ample 4.5.2. We note that in this case we have that the sides of the triangle on the cone

are constant angle and minimal.

To that end, let Lγ be a flowing equivariant Lagrangian, intersecting the cone C0
ψ at

points p±, forming a triangle P as in Example 4.5.2. Initially, we assume the intersec-

tions are transverse. Writing θ for the relative Lagrangian angle of Lγ and H = HLγ
for
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the mean curvature 1-form, by differentiating (2.2.5) we obtain

∂

∂ t

∫
P

ω =
∂

∂ t

Å
π

κ
µ̃(P)− 1

κ

∫
γ

H
ã

=
1
κ

∂

∂ t
(
θ(p−)−θ(p+)

)
− 1

κ

∂

∂ t

∫
γ

H

From each term, we obtain a normal and tangential term to account for the tangential

movement of the intersection points p± along C0
ψ under the flow. Writing the mean

curvature flow as
∂

∂ t
X = ~H +V

for a tangential diffeomorphism V to be determined, we have that

∂

∂ t
(
θ(p±)

)
= ∆θ(p±)+d†

α(p±)+ 〈∇θ ,V 〉(p±),

and

∂

∂ t

∫
γ

H =
∫

γ

Ä
dd†H +κH

ä
+

≠
∇

∫
γ

H,V
∑

=κ

∫
γ

H−∆θ(p−)+∆θ(p+)−d†
α(p−)+d†

α(p2)

−〈∇θ ,V 〉(p−)+ 〈∇θ ,V 〉(p+)−α(V )(p−)+α(V )(p+)

where we have used that H = dθ +α and hence d†H = ∆θ +d†α , where α is the closed

1-form on L defined by α(X) = HLr(πX). Combining the above equations and applying

(2.2.5), we obtain

∂

∂ t

∫
P

ω =κ

∫
P

ω−πµ̃(P)

+
1
κ

(
−α(V )(p−)+α(V )(p+)

)
.

(4.5.2)

Since the intersection is transversal, we can write the tangential vector field V as ~H+V =

W , for some vector field W on Lγ tangent to C0
ψ . The vector field W then gives the motion
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of p± along the cone, and we have that

α(V ) = α(W − ~H) = α(−~H).

Note that while V is not well-defined when the intersection is not transversal, α(−~H) is

well-defined everywhere on Lγ . Thus it is tempting to claim that

∂

∂ t

∫
P

ω =κ

∫
P

ω−πµ̃(P)

+
1
κ

Ä
−α(−~H)(p−)+α(−~H)(p+)

ä
.

(4.5.3)

even when the intersection is non-transversal. The most important case of this is char-

acterised in the following lemma, where ψ is a local maximum opening angle, allowed

to vary in time.

Lemma 4.5.3. Let Lγ be an equivariant Lagrangian mean curvature flow in CP2 on a

time interval [t1, t2], with γ not passing through the origin. Suppose that for t ∈ [t1, t2], Lγ

has a local maximum opening angle ψ(t) on [t1, t2], where ψ(t) is a smooth function of

t. Then the triangle P defined by the cone C0
ψ and γ , with vertices at p± and the origin,

satisfies
d
dt

∫
P

ω ≤ κ

∫
P

ω +(π−2ψ) (4.5.4)

Proof. Let γ(s) be parametrised by some variable s. Then there exists a smooth function

S(t) such that γ(S(t)) attains the maximum opening angle ψ(t).

Let A(s, t) =
∫

Ps
ω , where Ps is the triangle intersecting γ at γ(s). Here, the inte-

gral is the signed integral of ω , see Figure 4.5. Then we have to calculate the time-

derivative of A at S(t) for t ∈ (t1, t2). By choosing a sufficiently small time neigh-

bourhood (t−, t+) ⊂ (t1, t2) of t, we can find a time-independent space neighbourhood

(s−,s+) of S(t) for all t such that γ(s) intersects the cone transversally for all s 6= S(t).

For any fixed opening angle χ with transversal intersections with γ at p±χ , we have

that
∂

∂ t

∫
Pχ

ω = κ

∫
Pχ

ω−πµ̃(Pχ)+
1
κ

Ä
−α(−~H)(p+χ )+α(−~H)(p−χ )

ä
,

where Pχ is the triangle of opening angle χ , again calculated with sign. Now allowing
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Figure 4.5: Three triangles Ps, ordered with increasing s. In the right diagram, the area is counted
with sign, i.e. the green area is counted positively and the purple area negatively.

that the opening angle χ = χ(s, t) may evolve with s,

d
dt

A(s, t) =
∂

∂ t

∫
Pχ

ω +
dχ

dt
(s, t)

∂A
∂ χ

(s, t)

and taking limits as s→ S(t) gives

d
dt

A(S(t), t) =κ

∫
Pχ

ω−πµ̃(Pχ)+
1
κ

Ä
−α(−~H)(p+χ )+α(−~H)(p−χ )

ä
+

dχ

dt
(S(t), t)

∂A
∂ χ

(S(t), t)+
dS
dt

(t)
∂A
∂ s

(S(t), t).

But since S(t) is a local maximum of the area by assumption, we have that

∂A
∂ s

(S(t), t) = 0.

Furthermore, the maximum opening angle is decreasing in time, so

dχ

dt
(S(t), t)≤ 0,

and A is always increasing in χ for χ < ψ , so

dχ

dt
(S(t), t)≥ 0.
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Finally,

−α(−~H)(p+)+α(−~H)(p−)< 0

since the direction of the mean curvature is fixed by the assumption that p± are at the

maximum opening angle. Since the Maslov number satisfies πµ̃(P) = −(π − 2ψ), we

conclude that
d
dt

A(S(t), t)≤ κ

∫
Pχ

ω +(π−2ψ),

as desired.

4.6 Minimal equivariant Lagrangians
From equation (4.4.6), any minimal equivariant Lagrangian must satisfy

k−
Ç

1−4r2

1+2r2

å
〈γ,ν〉

r2 = 0. (4.6.1)

Away from the origin, equation (4.6.1) is a non-linear 2nd order ODE. Given any point

x ∈ C and an initial velocity v ∈ TxC, there is a unique local solution to (4.6.1) passing

through x with velocity v. The proof is identical to the equivalent statement for existence

and uniqueness of geodesics.

Two classes of solutions to (4.6.1) are immediately apparent. First, either from

the derivation of (4.6.1) or by direct calculation, one can see that the Clifford torus

L1 := Leis given by the unit circle is a minimal submanifold. Second, any straight line

through the origin lb = {seib : s∈R} has k = 0 and 〈lb,ν〉= 0, and hence gives a minimal

submanifold of CP2, topologically a real projective plane.

Combining the second class of solutions with the prior observation that solutions

to equation (4.6.1) are unique, we realise the following: If γ is a solution to (4.6.1) with

〈γ,ν〉 = 0 at a point p ∈ C∗ (or equivalently, a point p ∈ C∗ with relative Lagrangian

angle ±π/2), then γ is a line lb.

Let us consider minimal Lagrangians that can be written as graphs over (sections of)

the unit circle; that is to say Lagrangians given by point-symmetric curves γ(s) = r(s)eis
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with r(s) ∈ (0,∞). From (4.6.1), we have that r satisfies

−r′′r+2r′2 + r2 +

Ç
1−4r2

1+2r2

å
(r′2 + r2) = 0.

Rearranging, we obtain

− r′′r+
Å

3
1+2r2

ã
r′2 +2

Ç
1− r2

1+2r2

å
r2 = 0. (4.6.2)

We make the substitution

f (s) = log(r(s)).

Then we have

− f ′′+2
1− r2

1+2r2 f ′2 +2
1− r2

1+2r2 = 0. (4.6.3)

We aim to find a first integral of the equation. To that end, let y = f ′. Then

f ′′ = y
dy
d f

,

hence
dy
d f
−2

1− r2

1+2r2 y = 2
1− r2

1+2r2 y−1.

Making a further substitution u = y2, we have

du
d f
−4

1− r2

1+2r2 u = 4
1− r2

1+2r2 , (4.6.4)

Denoting

P( f ) = 4
1− r2

1+2r2 = 4
1− e2 f

1+2e2 f ,

we have that (4.6.4) is solved by use of an integrating factor, giving

f ′2 = u = e
∫

P( f )d f
∫

P( f )e−
∫

P( f )d f d f +Ce
∫

P( f )d f ,

where C is a constant determined by the initial conditions. Calculating explicitly, we
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have

f ′2 =C
e4 f

(1+2e2 f )
3 −1 =: B( f ,C). (4.6.5)

Explicit calculation verifies that this is indeed a solution of equation (4.6.3).

Given any constant C > 0, there is a constant R > 0 such that B( f ,C) < 0 for all

| f | > R. Hence every solution of (4.6.3) has f bounded, and therefore any solution to

(4.6.2) has r bounded away from 0 and infinity.

To find the minima and maxima of a solution to (4.6.2), we have to find zeroes of

B( f ,C). Letting x = e2 f , we see that the zeroes of B( f ,C) are determined by the positive

real roots of the cubic

PC(x) = 8x3 +(12−C)x2 +6x+1.

The discriminant of PC(x) is

∆ = 4C2(C−27).

There are then 3 cases to consider. Firstly, when C = 27, PC(1) = 0 is a repeated root:

this corresponds to the minimal Clifford torus L1. The third root is−1/8, which does not

correspond to a root of B( f ,C). Secondly, When C < 27, PC(x) has 1 real root and two

complex roots. Furthermore, in this case the real root is negative by applying Descartes’

rule of signs to PC(−x), implying that B( f ,C) has no roots for C < 27.

Finally, if C > 27, PC(x) has 3 distinct real roots. Applying Descartes’ rule of signs

to PC(x) and PC(−x) implies that PC(x) in this case has two positive real roots r1 < r2 and

one negative real root. The two positive roots determine zeroes of B( f ,C). We do not

find the roots explicitly, though this could of course be done by the formula for roots of

a cubic. However, by examining B( f ,C) directly, we can see that B( f ,C) has 1 positive

root and 1 negative root, which implies that

0 < r1 < 1 < r2 < ∞.

Note that as C→ ∞, r1→ 0 and r2→ ∞ monotonically.

Next, we approach the question of periodicity of solutions to (4.6.2). Since solu-
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tions can only have maxima at r2 and minima at r1 and are strictly bounded between r1

and r2, they must oscillate between the two with some period ψC. Note the solution must

be periodic since any solution to (4.6.2) is uniquely determined by the Cauchy boundary

condition r(s0) = r1 (or r2) and r′(s0) = 0.

The period ψC is given by solving (4.6.5). We have that

ψC = 2
∫ logr2

logr1

Ã
(1+2e2 f )

3

Ce4 f − (1+2e2 f )
3 d f =

∫ r2

r1

Ã
(1+2r2)

3

Cr4− (1+2r2)
3

1
r

dr,

where logr1 and logr2 are the positive real roots of B( f ,C). This integral cannot be eas-

ily evaluated by standard methods. However, with standard methods, we can determine

lower bounds for ψC for specific cases. We present C = 54 as an example since it will

be useful in the sequel.

Example 4.6.1. Let C = 54. Then the roots of

8x3 +(12−54)x2 +6x+1 = 0

are

r2
0 =

1
2
(5−3

√
3), r2

1 =
1
4
, r2

2 =
1
2
(5+3

√
3).

So making the substitution x = r2, we have that

ψ54 =
∫ 1

2 (5+3
√

3)

1/4
A(x)

1√(
x− 1

2

)Ä1
2(5+3

√
3)− x

ä dx,

where

A(x) =
(1+2x)3/2

2x
»

x− 1
2(5−3

√
3)
.

Note that A(x) is decreasing in x for x > 0. So

ψ54 >A
Å

1
2
(5+3

√
3)
ã∫ 1

2 (5+3
√

3)

1/4

1√(
x− 1

2

)Ä1
2(5+3

√
3)− x

ä dx=A
Å

1
2
(5+3

√
3)
ã

π,
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where we have used that

∫ b

a

1√
(x−a)(b− x)

dx = π,

as can be shown using the substitution x = t +(a+b)/2; letting y = (a−b)/2, we have

that

∫ b

a

1√
(x−a)(b− x)

dx =
∫ y

−y

1√
y2− t2

dt = sin−1(1)− sin−1(−1) = π.

We have that

A
Å

1
2
(5+3

√
3)
ã2

=
(6+3

√
3)3

(5+3
√

3)23
√

3
=

702+405
√

3
207+156

√
3
>

9
4
.

So ψ54 > 3π/2.

We aim instead to analyse the limiting behaviour as C→ ∞, illustrated in Figure

4.6. We show the following:

Lemma 4.6.2. The period ψC converges to 3π/2 as C→ ∞.

Proof. Let γC(s) = r(s)eis be a minimal equivariant Lagrangian. Without loss of gen-

erality, we suppose that r satisfies (4.6.2) subject to the initial condition r′(0) = 0 with

r(0) = r1 < 1 the minimal value being determined by C = (1+2r2
1)

3/r4
1 > 27.

Denote by ψ
−
C the inner period, i.e. the period where r(s)≤ 1. Similarly, denote by

ψ
+
C the outer period. Note that ψC = ψ

−
C +ψ

+
C .

First, we show that ψ
−
C is strictly greater than π/2 for all C with ψ

−
C → π/2 as

C→ ∞. To do so, we need two geometric inequalities that relate the inner period ψ
−
C

to the minimum value r1. See Figure 4.7 for the following setup. Denote by P the

J-holomorphic biangle lying inside B1 with sides on γC and L1, and vertices at the inter-

section points p± between γC and L1. By assumption, we have that p± = eiψ−C /2. Let A

denote the J-holomorphic quadrangle with sides on L1, Lr1 and the cone C0
ψ
−
C

. Finally,

denote by B the J-holomorphic triangle with vertices at p−, p+ and the minimum value

γC(0) = r1, and sides on L1 and η±, where η± is the radial straight line connecting γC(0)
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Figure 4.6: The inner period converges to π/2 and the outer period converges to π as C→ ∞.

Figure 4.7: The area of P (the blue region) is bounded above by the area of A (the green region)
and bounded below by the area of B (the orange region).
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to p±, i.e.

η
±(s) =

Ç
2

1− r1

ψ
−
C

s+ r1

å
e±is.

Then we have the geometric inequalities

κ

∫
A

ω > κ

∫
P

ω > κ

∫
B

ω. (4.6.6)

The first inequality is immediate. For the second inequality, we have that (4.6.2) implies

that r′′(s)> 0 for r ≤ 1, and hence r is convex as a function of s for r < 1.

Since γC is minimal and the relative Lagrangian angle for γC is given by tan−1(r′/r),

we have that

κ

∫
P

ω = πµ̃(P) = 2π−2tan−1

Ç…
C
27
−1

å
= 2π−2tan−1

(√
1

27
(1+2r2

1)
3

r4
1

−1

)
.

We can calculate κ
∫

A ω using Cieliebak–Goldstein. We have that µ̃(A) = 0, so (4.4.2)

gives

κ

∫
A

ω =−
ψ
−
C

2π

∫
Lr1

HLr1
= 2ψ

−
C

1− r2
1

1+2r2
1
.

Therefore (4.6.6) implies

ψ
−
C >

1+2r2
1

1− r2
1

(
π− tan−1

(√
1

27
(1+2r2

1)
3

r4
1

−1

))
,

so ψ
−
C > π/2 for all C > 27 and

lim
C→∞

ψ
−
C = lim

r1→0
ψ
−
C ≥ π/2. (4.6.7)

Instead of using Cieliebak–Goldstein to calculate κ
∫

B ω , it is simpler to calculate di-

rectly. Letting a = 2(1− r1)(ψ
−
C )−1 for ease of notation, we have that

κ

∫
B

ω = 2κ

∫
ψ
−
C /2

0

∫ 1

aφ+r1

2r
(1+2r2)2 drdφ

= κ

∫
ψ
−
C /2

0

ï
− 1

1+2r2

ò1

aφ+r1

dφ
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= κ

∫
ψ
−
C /2

0
−1

3
+

1
1+2r2

1 +4ar1φ +2a2φ 2 dφ

= κ

ï
−φ/3+

1√
2a

tan−1
Ä√

2(aφ + r1)
äòψ

−
C /2

0

= ψ
−
C

Ç
−1+

3√
2(1− r1)

Ä
tan−1

Ä√
2
ä
− tan−1

Ä√
2r1

ääå
= ψ

−
C

Ç
−1+

3√
2(1− r1)

tan−1

Ç√
2(1− r1)

1+2r1

åå
,

where we have used the equality

tan−1(x)− tan−1(y) = tan−1
Å

x− y
1+ xy

ã
in the final line. Therefore (4.6.6) implies that

ψ
−
C <

Å
2π−2tan−1

Å…
1

27
(1+2r2

1)
3

r4
1
−1
ãã

−1+ 3√
2(1−r1)

tan−1
(√

2(1−r1)
1+2r1

) .

Since limx→0 tan−1(x)/x = 1, we have that

lim
C→∞

ψ
−
C = lim

r1→0
ψ
−
C ≤ π/2. (4.6.8)

Combining (4.6.7) and (4.6.8) gives

lim
C→∞

ψ
−
C = lim

r1→0
ψ
−
C = π/2.

The proof that

lim
C→∞

ψ
+
C = lim

r2→∞
ψ

+
C = π

with ψ
+
C < π for all C > 27 is largely similar, with one additional complication. Letting

P be the biangle lying outside B1, and A and B constructed similarly to above, we claim

that if we have the geometric inequalities (4.6.6), then the result follows. Indeed, if the

geometric inequalities held, the proof is identical up to small changes in the calculation.

The first inequality clearly holds, and so we obtain in the same way as above that ψ
−
C < π
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Figure 4.8: The radius r(s) of a minimal curve γC in blue compared with the radius of a radial
line η in orange. The region J is labelled. The region K is so small as to not be
visible in the left diagram, but is visible on a smaller scale, see the right diagram
where the difference between the minimal curve and the radial line is plotted for
small s.

for all C > 27 and

lim
C→∞

ψ
−
C = lim

r1→0
ψ
−
C ≤ π.

Although the second inequality in (4.6.6) does in fact hold, it is not immediately apparent

why. Above, we were able to use the fact that r′′ > 0 for r ≤ 1 to derive the second

inequality. However, r is neither convex nor concave for r ≥ 1, so we need a more

advanced method.

It suffices then to prove that for sufficiently large C > 27,

κ

∫
P

ω > κ

∫
B

ω.

Consider then the set-up depicted in Figure 4.8, where we have plotted γC as a graph over

s, assuming now that the intersection with the r = 1 line occurs at s = 0 for simplicity.

We want to show that the area under γC (which is equal to
∫

P ω/2) is greater than the

area under the area under the radial straight line η(s), which as a radial function of s

is given by 2s(r2− 1)/ψ
+
C + 1. This amounts to showing that the area

∫
J ω is greater

than the area
∫

K ω , where J and K are the depicted regions. Since γC is by assumption

minimal, Cieliebak–Goldstein gives

κ

∫
J

ω−κ

∫
K

ω =−
∫

η

HLη
+ζ −ξ ,

where ξ and ζ are the interior angles at the corners (note the Maslov classes of J and K
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have cancelled significantly).

Let a = 2(r2−1)/ψ
+
C for ease of notation. Then we have that ζ = tan−1(a/r2) and

ξ = tan−1(a)− tan−1

(√
1

27
(1+2r2

2)
3

r4
2

−1

)
.

So

ζ −ξ =− tan−1
Å

r2a−a
r2 +a2

ã
− tan−1

(√
1

27
(1+2r2

2)
3

r4
2

−1

)
.

Then

lim
C→∞

(ζ −ξ ) =− tan−1

Ç
ψ

+
C
2

å
− π

2
.

We have that

HLη
=

a2

a2− r2 −2
r2−1

1+2r2 ,

where r = as+1. Then

∫
η

HLη
=
∫

ψ
+
C /2

0

a2

a2 +1+2as+a2s2 −
2a2s2 +4as

3+4as+2a2s2 ds

=

ñ
−s+ tan−1

Å
1
a
+ s
ã
+

3
√

2
2a

tan−1
Ä√

2(1+as)
äôψ

+
C /2

0

=−ψ
+
C /2+ tan−1

Å
1
a
+ψ

+
C /2
ã
− tan−1

Å
1
a

ã
+

3
√

2
2a

Ä
tan−1

Ä√
2(1+aψ

+
C /2)

ä
− tan−1

Ä√
2
ää

We claim that a→ ∞ as C→ ∞. We postpone the proof of this in favour of completing

the rest of the proof. We have then that

lim
C→∞

Å
−
∫

η

HLη
+ζ −ξ

ã
= lim

C→∞

Ç
ψ

+
C /2+ tan−1 (

ψ
+
C /2

)
− tan−1

Ç
ψ

+
C
2

å
− π

2
)

å
> 0,

since we know that ψ
+
C > π for all C > 27. Thus the inequality

κ

∫
P

ω > κ

∫
B

ω

does hold for sufficiently large C > 27.
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It remains to prove the above claim that a→ ∞ as C→ ∞, or equivalently, to prove

that ψ
+
C is bounded for all C > 27. To do so, it suffices to use a much weaker inequality

than the above. As observed above, r is convex for r < R and concave for r > R, where

R > 1 is a radius determined by a root of the equation

r′′r =
3

1+2r2 r′2 +2
1− r2

1+2r2 r2 = 0.

Since r′2/r2 = f ′2 =Cr4(1+2r2)−3, R is a root of the equation

2r2(1+2r2)3 +(1+2r2)3−3Cr4 = 0.

For C > 27, the above equation has exactly one root greater than 1, namely

R =

 
1
8

Å
−4+

√
3C+

»
C
√

3−8
√

C
ã
.

Note that R→ ∞ as C→ ∞. To derive a contradiction, choose C > 27 sufficiently large

that ψ
+
C > 4π and R > 4. Since r is convex on the interval [1,R) and

√
C/27−1→ ∞

as C→ ∞, we can also choose C sufficiently large that the period of time that r < 4 is

less than 2π . Then
∫

P ω is bounded below by the area of the annulus A(1,4), which is

strictly bigger than π/6. So

κ

∫
P

ω > π,

but Cieliebak–Goldstien gives that

κ

∫
P

ω < π,

a contradiction. This completes the proof.

We can now prove the main theorem of this section.

Theorem 4.6.3. There exists a countably infinite family of complete immersed minimal

equivariant Lagrangians. In particular, for any R > 0, there exists a complete immersed

minimal equivariant Lagrangian Lγ with minLγ
r ≤ R.
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Figure 4.9: Complete immersed minimal equivariant Lagrangians of varying period. The corre-
sponding integers pairs are (m,k) = (7,6), (11,9) and (14,10).

Proof. Note that the period ψC of a solution γC to (4.6.2) depends continuously upon the

initial condition. Since ψC→ 3π/2 by Lemma 4.6.2 and by Example 4.6.1 ψC > 3π/2

for some C > 27, we have that there exists δ > 0 such that for every ψ ∈ (3π/2,3π/2+

δ ) there exists a C > 27 such that ψC = ψ . In particular, we can find infinitely many

integer pairs (m,k) and values C(m,k)> 27 such that

mψC(m,k) = 2πk.

Then the minimal equivariant Lagrangians γC(m,k) described by C(m,k) are complete

immersed minimal equivariant Lagrangian. This is an infinitely large family of unique

solutions since for every sufficiently large prime k, we can obtain at least one solution.

Since this argument also applies to any δ ′ < δ , we can construct Lγ satisfying the

second part of the theorem.

Figure 4.9 illustrates the spirograph-like shape of the complete immersed minimal

equivariant Lagrangians.

While we are on the subject, we prove one final property of the minimal surfaces

which will be useful in proving Lemma 4.7.5. The idea of the proof is similar to Lemma

4.6.2, but a slightly different geometric estimate is required. Instead of estimating using

a disc B with boundary on a radial straight line, we use a disc B with boundary on a

Euclidean straight line, see Figure 4.10

Proposition 4.6.4. Let γC(s) = r(s)eis, C > 27, be a solution to equation (4.6.2) with
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Figure 4.10: Radial straight lines (orange) used in Lemma 4.6.2 compared to the Euclidean
straight line (red) used in Proposition 4.6.4. Both give lower bounds for the region
contained between γ (blue) and the circle of radius RC (purple).

initial condition r′(0) = 0 with r(0) = r1 < 1. Let RC := r(π/4), i.e. the radius of

intersection with the cone C0
π/2. Then RC→ 0 as C→ ∞.

We need a lemma to prove Proposition 4.6.4, which guarantees the Euclidean

straight lines give lower bounds for sufficiently large C > 27.

Lemma 4.6.5. Let γC be as in the statement of Proposition 4.6.4. Then RC < 1/2 for C

sufficiently large.

The idea of the proof is to find a subsolution (a hyperbola) with the desired be-

haviour, and then use the comparison principle to obtain the result.

Proof. Consider the hyperbolas γa,c given by

a2x2− y2 = c2

for constants a,c > 0 to be determined. For a > 1, γa,c is asymptotic to C0
π/2+2ε(a) for

some ε(a) > 0, with ε(a)→ 0 as a→ 1. Parametrising by the x coordinate, the part of
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γ = γa,c in the positive quadrant is given by

γ(x) = (x,
√

a2x2− c2),

for x≥ c/a, which has unit normal

ν =
1√

a2x2 +a4x2− c2

Ç
−a2x√

a2x2− c2
,1

å
.

The planar curvature k is then

k =
y′′

(1+ y′2)3/2 =− c2a2

(a2x2 +a4x2− c2)
3/2 ,

and

〈γ,ν〉= −c2
√

a2x2 +a4x2− c2
.

Hence we have that

(1+2r2)k− (1−4r2)
〈γ,ν〉

r2 >
1

(a2x2 +a4x2− c2)
3/2

(
(1+2r2)c2a2 +(1−4r2)c2

)
,

for r < 1/2. It follows that

(1+2r2)k− (1−4r2)
〈γ,ν〉

r2 =
c2

B

Ä
−(r2 +2r4)a2 +(1−4r2)(a2r2 + c2(a2−1))

ä
,

where B=
√

a2x2 +a4x2− c2 =
√

a2r2 + c2(a2−1). Simplifying further and using r2≥

c2/a2, we have

(1+2r2)k− (1−4r2)
〈γ,ν〉

r2 ≤ c4

B

Ç
−6c2

a2 +(a2−1)(1−4r2)

å
≤−2c2

a2 +a2−1−4c2.

Solving the resulting quadratic, we find that we have

(1+2r2)k− (1−4r2)
〈γ,ν〉

r2 ≤ 0
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for all a > 1 satisfying

1 < a2 ≤
Å

2c2 +
1
2

ã
+

 Å
2c2 +

1
2

ã2
+2c2.

On the other hand, we have that γa,c intersects the cone C0
π/2 when (a2−1)x2 = c2,

which occurs at radius R with

R2 =
2c2

a2−1
.

So for

a2 =

Å
2c2 +

1
2

ã
+

 Å
2c2 +

1
2

ã2
+2c2,

we have that

R2 = 2c2

(Å
2c2− 1

2

ã
+

 Å
2c2 +

1
2

ã2
+2c2

)−1

,

which converges to 1/3 as c→ 0. So we can choose a > 1 and c > 0 such that R < 1/2.

Let C be any constant such that γC has r1 ≤ c. We claim this implies that γC inter-

sects the cone C0
π/2 at a radius less than R < 1/2. Suppose not. Then γC intersects γa,c

at two points inside the cone C0
π/2. Consider the quasilinear elliptic operator Q( f ) given

by

Q( f ) =− f ′′+2
1− r2

1+2r2 f ′2 +2
1− r2

1+2r2

where f = logr, see equation (4.6.3). Let fC and fa,c be the logarithms of the radius

functions of γC and γa,c respectively. Then we have that Q( fC) = 0 and Q( fa,c) < 0.

Furthermore, we have that for s ∈ [−S,S]⊂ (−π/4,π/4), fC(s)≤ fa,c(s) with fC(S) =

fa,c(S). Since

∂r

Ç
1− r2

1+2r2

å
< 0

for all r, we can apply the comparison principle for quasilinear elliptic operators to

deduce that

fC(s)≥ fa,c(s)

for all s ∈ [−S,S], a contradiction.

Proof of Proposition 4.6.4. By Lemma 4.6.5, we have that r1 < RC < 1/2 for suffi-
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ciently large C > 27, and hence r(s) < 1/2 for all s ∈ [−π/4,π/4]. Consider now γ

as a graph over the y-axis, i.e. γ(y) = x(y)+ iy for y in an interval I containing 0. Since

x = r(s)coss and y = r(s)sins, simple application of the chain rule gives that

d2x
dy2 =

1
(r′ sins+ r coss)3

Ä
r′′r−2r′2− r2

ä
.

Using (4.6.2), we have that

d2x
dy2 =

1
(r′ sins+ r coss)3

Ç
1−4r2

1+2r2

åÄ
r′2 + r2

ä
,

which is greater than 0 for r < 1/2. So x(y) is convex as a function of y. Hence the

Euclidean straight line η± connecting the minimum value r1 with RCe±iπ/4 does not

intersect γC for s ∈ (0,π/4). Similar to the proof of Lemma 4.6.2, denote by P the

J-holomorphic biangle bounded by γ and the circle LRC , and by B the J-holomorphic

triangle with boundary on η± and LRC . We have the geometric inequality

κ

∫
P

ω > κ

∫
B

ω,

and as in Lemma 4.6.2, we have that

κ

∫
P

ω = πµ̃(P)− 1
4

∫
LRC

HLRC

= 2π−2tan−1

(√
(1+2r2

1)
3

r4
1

R4
C

(1+2R2
C)

3 −1

)
+π

Ç
R2

C−1
1+2R2

C

å
= π−2tan−1

(√
(1+2r2

1)
3

r4
1

R4
C

(1+2R2
C)

3 −1

)
+πR2

C

Ç
3

1+2R2
C

å
On the other hand, we can estimate

∫
B ω by the Euclidean area of B. Note that since

r < RC < 1/
√

2, we have that

ω =
2r

(1+2r2)2 dr dφ ≥ 2
1+2R2

C
r dr dφ ≥ ω0,
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where ω0 is the Euclidean area form. The Euclidean area of B is given by

∫
B

ω0 =
πR2

C
4
− r1RC√

2
.

Then the geometric inequality gives

πR2
C

Ç
3

1+2R2
C
− 3

2

å
> π−2tan−1

(√
(1+2r2

1)
3

r4
1

R4
C

(1+2R2
C)

3 −1

)
−3
√

2r1RC.

If RC is bounded below by ε > 0, the right-hand side converges to 0 as C→ ∞ while the

left-hand side is strictly less than 0, a contradiction. This completes the proof.

4.7 Singularities for equivariant tori
To restrict the number and variety of singularities under consideration, we want to

largely follow the ideas of Wood ( [51], [52]), although we have to make many ad-

justments to account for the differences in the situations.

As Wood’s work relies heavily on [33, Theorem B], we first prove a version of

Neves’ Theorem B for our situation. In fact, we show that we can modify the monotone

version [34, Theorem B] (see Theorem 2.3.2) to apply to CP2.

Lemma 4.7.1. Let L be a monotone Lagrangian mean curvature flow in CP2 with a

finite-time singularity at T < ∞. For any sequence L j
s of rescaled flows, the following

property holds for all R > 0 and almost all s < 0:

For any sequence of connected components Σ j of B4R(0)∩L j
s that intersect BR(0),

there exists a special Lagrangian cone Σ in B2R(0) with Lagrangian angle θ̄ such that,

after passing to a subsequence,

lim
j→∞

∫
Σ j

f (exp(iθ j
s ))φdH 2 = m f (exp(iθ̄))µ(φ)

for every f ∈C(S1) and every smooth φ compactly supported on B2R(0), where µ and

m denote the Radon measure of the support of Σ and its multiplicity respectively.

Proof. By Proposition 3.3.4, a monotone torus in CP2 lifts to a monotone spherical

Lagrangian 3-torus in S5 ⊂C3. The flow also lifts, becoming a flow with a singularity at
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a time T̃ < 1/2 (recall that t = 1/2 is the singular time of the sphere S5). The singularity

in the lift occurs along an S1, the Hopf fibre above the singular point of the original flow.

At this point we can already apply [34, Theorem A] to show that we have conver-

gence to a finite set of special Lagrangian cones with angles θk. We want to show that we

can instead apply [34, Theorem B], which a priori only applies in C2. Indeed, the only

part of the proof of Theorem B which does not hold in higher dimensions is [34, Lemma

5.2]. So we have to show that for all j sufficiently large, there exists some C > 0 such

that Ä
H 3(A)

ä2/3
≤CH 2(∂A), (4.7.1)

for any open subset A of L j
s ∩B6R(0) with rectifiable boundary. To do so, we have to

hop between the original flow in CP2 and the lifted flow in C3. First, note that since the

Hopf fibration is an isometry up to scale, the final time T gives an inequality relating

the areas of subsets of the flows (note that no such inequality would exist if T = ∞ or

equivalently T̃ = 1/2). If A is an open subset of L j
s and A0 is its image under the Hopf

fibration, we have that there exists constants c1(T ),c2(T ) such that

c1(T )H 2(A0)≤H 3(A)≤ c2(T )H 2(A0).

Instead of using the Michael–Simon Sobolev inequality [32] as in the proof of [34,

Lemma 5.2], we instead apply Brendle’s Michael–Simon Sobolev inequality for Rie-

mannian manifolds with positive curvature [7] to the flow in CP2. Denote by A0 ⊂ L the

image of A under the Hopf fibration. Then, following the idea in [34, Lemma 5.2], we

have Ä
H 2(A0)

ä1/2
≤C(R)

∫
A0

|H0|dH 2 +CH 1(∂A0)

≤C
Ä
H 2(A0)

ä1/2
Å∫

A0

|H0|2
ã1/2

+CH 1(∂A0).

Neves’s proof of Theorem A implies that

lim
j→∞

∫
L j

s∩BR(0)
|H|2 dH 3 = 0
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for almost all s and all R > 0, so we have that

lim
j→∞

∫
π(L j

s∩BR(0))
|H0|2 dH 2 = 0

also. Then rearranging the above calculation we have that there is a universal constant

C such that for all j sufficiently large,Ä
H 2(A0)

ä1/2
≤CH 1(∂A0).

Now using the Michael–Simon Sobolev inequality on the lifted flow in C3, we obtainÄ
H 3(A)

ä2/3
≤C

∫
A
|H|dH 3 +CH 2(∂A)

≤C
Ä
H 3(A)

ä1/2
Å∫

A
|H|2 dH 3

ã1/2
+CH 2(∂A)

≤C(T )
Ä
H 2(A0)

ä1/2
Å∫

A
|H|2 dH 3

ã1/2
+CH 2(∂A)

≤C(T )H 1(∂A0)

Å∫
A
|H|2 dH 3

ã1/2
+CH 2(∂A)

≤C(T )H 2(∂A)

Ç
1+
Å∫

A
|H|2 dH 3

ã1/2
å
,

and so the result (4.7.1) follows. The rest of the proof follows as in [34], and the result

factors down to CP2 as desired.

With Lemma 4.7.1 in hand, we can prove many of the results of Wood [52] for our

situation.

Proposition 4.7.2. Suppose Lγ is an equivariant monotone Clifford or Chekanov torus

in CP2. Let T ∈ (0,∞] be the maximal existence time for Lγ .

1. If γ is initially embedded, it is embedded for all t ∈ [0,T ). If Lγ1,Lγ2 are two initial

conditions with a finite number of intersections, then the number of intersections

of γ1 and γ2 is a decreasing function in t. Similarly, the intersection number of γ

with any cone Ca
b is also a decreasing function in t.

2. If Lγ has a finite-time singularity, then it must occur at the origin.
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3. The type I blow-up of any singularity is the cone C0
π/2.

4. The type II blow-up is a Lawlor neck asymptotic to the type I blow-up. The blow-

up is independent of rescaling sequence.

In addition, we also expect the following result of Wood [52] to hold in our case,

though the proof certainly must differ due to the global topology of the situation. We do

not directly use the result in the sequel, so we leave it as conjecture.

Conjecture 4.7.3. The type I blow-up of any singularity is a multiplicity 1 copy of the

cone C0
π/2. The blow-up is independent of the rescaling sequence. (c.f. [52, Theorem

5.2.8])

However, we do sketch a proof that the singularity is multiplicity 1 locally, in the

following sense.

Proposition 4.7.4. Any sequence of connected components as in the statement of Theo-

rem 4.7.1 converges to a multiplicity 1 copy of the cone C0
π/2.

Proof of Proposition 4.7.2.

1. All 3 statements may be proven by variations on the same argument, which dates

back to Angenent [2] applying a classical result of Sturm [45] on the zeroes of a

uniformly parabolic PDE (see [2, Proposition 1.2]).

We show the intersection of Lγi is decreasing, the other statements follow similar

methods. Since Lγi is a Clifford or Chekanov torus, γi does not pass through the

origin or infinity before the singular time. In particular, for any T ′ < T we can

find an annulus A(r,R) ⊂ C with γi ⊂ A(r,R), for all t ∈ [0,T ′]. On this annulus,

the evolution equation for γi is uniformly parabolic for both i.

Then we are in the situation of [2, Theorem 1.3], and therefore the number of

intersections of γ1 and γ2 is decreasing in t.

2. The statement is the same as [52, Theorem 5.2.6], but the proof in our case uses a

method closer to that found in the proof of [52, Theorem 5.2.15].
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For a contradiction, suppose Lγ = Fγ(L) has a finite-time singularity not at the

origin, i.e. at a point x ∈ C∗. Since Lγ is monotone, the singularity is type II by

Theorem 4.1.2. Consider then a type II blow-up sequence, that is to say a sequence

of space-time points (pi, ti) with xi = Fγ(pi)→ x as i→∞, where ti ∈ [0,T −1/i],

satisfying

|Ati(pi)|2
Å

T − 1
i
− ti

ã
= max

t∈[0,T−1/i],p∈Lγ

Å
|At(p)|2

Å
T − 1

i
− t
ãã

.

Then we can find a subsequence with

(a) |Ati(pi)| → ∞ monotonically,

(b) |Ati(pi)|2
(
T − 1

i − t
)
→ ∞.

As in [52, Theorem 5.2.15], we have that the parabolic rescaling of Fγ

F(xi,ti)
τ (p) := Ai

(
Fti+A−2

i τ
(p)− xi

)
with a factor Ai = |Ati(pi)| around (xi, ti) converges locally smoothly to a limiting

eternal flow in C2, the type II blow-up Lτ . Since the finite-time singularity is not

at the origin by assumption, the origin goes to infinity under the rescaling and

hence the equivariance becomes a translational symmetry for the type II blow-up,

i.e. there is a vector V ∈ C2 that is tangent to Lτ for all space-time points. Hence

the type II blow-up is characterised by time-dependent curves γτ ∈C given by the

intersection of Lτ with the orthogonal complement of span(V,JV )⊂ C2.

By definition of the rescaling, |A| takes a value of 1 on the type II blow-up at

the space-time point (0,0) ∈ C2 × (−∞,∞). Since Lτ is given by γτ ×R, the

second fundamental form of Lτ is determined by the geodesic curvature of γτ .

Therefore the geodesic curvature of γτ is non-zero at (0,0), but this implies the

mean curvature of Lτ is non-zero at (0,0). So Lτ is not special Lagrangian.

However, we can use Lemma 4.7.1 in the same way as Wood uses Neves’ Theo-

rem B in the proof of [52, Theorem 5.2.13]. In particular, we find that we have

convergence of the Lagrangian angle θ i
τ of the type II rescaling to a constant θ̄
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on any bounded parabolic region. But this implies Lτ is special Lagrangian, a

contradiction.

3. The ideas used here are similar to those in the proof of [52, Theorem 5.2.8]. The

main differences are as follows. We have monotone Lagrangians as opposed to

almost-calibrated, which leads to additional possible singularities coming from

the topology that Wood is able to rule out. However, we employ a stronger sym-

metry; the Z2-symmetry drastically restricts the possible planes that can occur in

the blow-up. Furthermore, we are able to use Lemma 4.7.5, which is currently a

positive curvature only fact, to eliminate some of the topological issues.

By the above, the singularity must occur at the origin. By Lemma 4.7.1, the type

I blow-up is a union of special Lagrangian planes, and furthermore each con-

nected component must converge to a pair of planes with equal angle. Since Lγ is

equivariant and does not pass through the origin, the only possible planes in the

blow-up are l0, lπ/2 (with Lagrangian angle 0 or π) and l±π/4 (with Lagrangian an-

gle ±π/2). This follows since the Z2-symmetry leads to embeddedness breaking

for any other limiting plane.

We now claim that the Z2-symmetry prohibits the planes l0 and lπ/2 from occur-

ring. Suppose we have a sequence of rescalings Li
s = λiLλ

−2
i s, where we assume

the singularity is at T = 0 for ease of notation. Let Li
s be given by profile curves γ i,

where we have suppressed the s notation for convenience. Suppose further that γ i

converges to give the real axis in the limit. Then we can find a sequence of points

xi ∈ γ i with xi → 1 ∈ C. Without loss of generality and using the Z2-symmetry

across the axes, we can assume that xi lie in the strictly real quadrant i.e. the

region Z = {reiφ ∈ C : φ ∈ (0,π/2)}. Choose R > 0 such that xi ∈ B4R(0) for

i sufficiently large, and consider the sequence of connected components σ i ⊂ γ i

containing xi, in the sense that σ i satisfies the inclusions

σ i γ i

Σi Li
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for the corresponding sequence of connected components Σi of Li. For i suffi-

ciently large, we have that σi intersects BR, and hence Theorem 4.7.1 implies that

we have convergence of the angle θ i against test function to a constant multiple of

2π .

Suppose σ i intersects the imaginary axis. Then by Z2-reflection, σ i is the mirror

image on the quadrant −Z̄, i.e. the map z 7→ −z̄ preserves σ i. Since θ can be

written for a profile curve γ(s) as

θ(γ(s)) = arg(γ(s))+ arg(γ ′(s)),

we have that

θ

Ä
−γ(s)

ä
= arg

Ä
−γ(s)

ä
+ arg

Ä
−γ ′(s)

ä
=−θ(γ(s)) mod π,

since the orientation of γ ′(s) can be freely chosen. However, since the angle is

continuous, and the angle where σ i intersects the imaginary axis is π/2, we have

that

θ

Ä
−σ i
ä
=−θ(σ i)+π mod 2π. (4.7.2)

Without loss of generality, suppose l0 appears in the limit with angle 0 (angle π is

similar). By Theorem 4.7.1, we have for any ε > 0 there exists an N such that for

all i > N the “ε-bad subset”

T i = {x ∈ σ
i∩B2R(0) : |eiθ i

−1| ≥ ε}

has
H 1(T i)

2R
< ε.

On the other hand, we can also find N such that the “ε-good subset”

Si = Ai = {x ∈ σ
i∩B2R(0) : |eiθ i

−1|< ε}
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has for i > N
H 1(Si)

2R
> 1/2

since the density in the limit is at least 1. (Here we have the results in [52, Sec-

tion 5.1] to conclude that it suffices to consider the H 1 measure of the curve γ

rather than the H 2 measure of the Lagrangian.) But this contradicts (4.7.2) since

the same would also apply to −T i. So σ i cannot intersect the imaginary axis in

B4R(0).

Since σ i does intersect the ball BR(0), we can find at least two distinct connected

components σ i
1 and σ i

2 of σ i∩A(R,2R), where A(a,b) is the annulus

A(a,b) = Bb(0)−Ba(0).

Hence the density ratio

lim
i→∞

H 1(σ i∩A(R,2R))
R

≥ 2.

In addition, we can choose σ i
1 and σ i

2 such that they have different orientations,

i.e. one must go from the outside to the inside and vice versa. Hence, they must

converge to different limiting curves in the blow-up. There are only two possible

limiting planes with angle 0, either the positive real axis oriented in the positive

direction or the imaginary axis oriented in the negative direction. To see this,

note that the possible limiting planes for curves in the quadrant Z are given by

lines la with a ∈ [0,π/2]. The plane given by la has angle either 2a or 2a+ π ,

depending on the chosen orientation. So the only way to have angle 0 mod 2π is

to have a = 0 or π/2, with the above stated orientations. Hence the type I blow-up

therefore contains both l0 and lπ/2.

Our goal now is to bound the density ratio above to show that

lim
i→∞

H 1(σ i∩A(R,2R))
R

< 3,
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which will then imply that

lim
i→∞

H 1(σ i∩A(R,2R))
R

= 2

since the limit is integer valued.

Let σ i
k be any connected component of σ i ∩ A(R,2R). Since σ i

k is part of the

connected component σ i, the angle of σ i
k converges to 0 and hence for any ε,δ > 0

we can find N sufficiently large so that for i > N the ε-bad subset

T i
k = {x ∈ σ

i
k : |eiθ i

k−1| ≥ ε}

has
H 1(T i

k )

R
< δ .

Huisken’s monotonicity formula implies that

fi(t) =
∫

γ i

∣∣∣∣∣H− X⊥

2t

∣∣∣∣∣
2

ρ(·, t)ds

converges to 0 in L1
loc((−∞,0]), where X is the position vector and ρ is the back-

wards heat kernel at (0,0) . Hence we can find a subsequence of fi converging

point-wise almost everywhere to 0, and hence for almost every t, we can find a

bound on the curvature on any fixed sized ball after rescaling:

∫
γ i∩B2R

|H|2 dµ ≤C.

Since the equivariant part of the curvature is uniformly bounded away from 0 on

the annulus A(R,2R), see equation (4.4.6), this implies that

∫
σ i

k

κ
2 dµ ≤C(R).

Let p1, p2 be points in σ i
k, and let τ(pi) be the Euclidean tangent angle at pi.

Parametrising σ i
k by arclength, the fundamental theorem of calculus and Hölder’s
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inequality give

|τ(p2)− τ(p1)|=
∣∣∣∣∫ p2

p1

∂

∂ s
τ ds
∣∣∣∣= ∣∣∣∣∫ p2

p1

κ dµ

∣∣∣∣≤ (distγ(p1, p2)
) 1

2

Ç∫
σ i

k

κ
2 dµ

å 1
2

,

where distγ(p1, p2) is the intrinsic distance between p1 and p2 in γ . Thus

|τ(p2)− τ(p1)| ≤C(R)
(
distγ(p1, p2)

) 1
2 .

Recall that the Lagrangian angle θ at p is given by

θ(p) = arg(p)+ τ(p).

Then we claim that the for any ε > 0, the ε-bad subset T i
k is empty for sufficiently

large i. Suppose for a given ε > 0, we can find a sequence of points pi in T i
k with

θ(pi) = 2ε . For a given i and δ > 0 to be determined, suppose that x ∈ σ i
k satisfies

distγ(x, pi)≤ Rδ .

The Lagrangian angle at x satisfies

θ(pi)−δ −C(R)δ
1
2 ≤ θ(x)≤ θ(pi)+δ +C(R)δ

1
2 ,

so by choosing δ sufficiently small, we have that x ∈ T i
k for all x. But for suffi-

ciently large N, we have that for i > N,

H 1(T i
k )

R
< δ ,

a contradiction. Since the initial choice of ε > 0 was arbitrary, we have proven

the claim. As a corollary of the claim, we have that for any connected component

σ i
k and any ε ′ > 0, we can find N such that for i > N we can write σ i

k as a ε ′-

small C1-normal graph over either an angle 0 Lawlor neck or the real or imaginary

axes. This holds since Lawlor necks and planes through the origin are the only
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equivariant special Lagrangians, see [52][Lemma 5.1.5]. Furthermore, since some

point in σ i
k must converge to either the real or imaginary axis, we can guarantee

that σ i
k intersects the ball BR for sufficiently large i. This holds since as any Lawlor

necks distance to the axis on A(R,2R), is proportional to their minimal distance to

the origin.

Now we are in a position to show that

lim
i→∞

H 1(σ i∩A(R,2R))
R

= 2. (4.7.3)

If there are only two connected components σ i
k, this follows from calculating the

maximum density of a Lawlor neck intersecting BR. Writing a Lawlor neck with

minimum distance to the origin R as

η(φ) =
R√

sin2s
eiφ ,

see [52][Lemma 5.1.5], direct calculation yields that

∫
η∩A(R,2R)∩Z

dµ = R
Å√

15−2E
Å

1
4
(π−2cot−1(

√
15))

∣∣∣∣2ãã<
14
5

R,

where E(x|m) is the elliptic integral of the second kind. Hence

H 1(σ i
k∩A(R,2R))

R
<

3
2
,

for all i sufficiently large, and since the density in the limit must be an integer, we

conclude that

lim
i→∞

H 1(σ i
k∩A(R,2R))

R
= 2,

as desired.

So it remains to verify there are only two connected components. This is a matter

of simple topology, as illustrated in Figure 4.11. There is no way to have more

than 2 connected components with the curve remaining embedded. Hence we have

shown that (4.7.3) holds, and hence that the connected component σ i contributes
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Figure 4.11: If σ i∩A(R,2R) has more than two connected components, it is impossible to com-
plete the curve σ i without breaking embeddedness. The figure illustrates a failed
attempt to do so.

to the type I blow-up a single copy of the real and imaginary axes, l0 and lπ/2.

We can now derive the final contradiction. Leaving the quadrant Z, note that the

Z2-symmetry implies that l0 and lπ/2 both occur as a double density plane; in

essence we have two Lawlor neck singularities forming with different angles, see

Figure 4.12. Then we claim that the curves σ i and σ̄ i must in fact intersect the

real and imaginary axes within some small ball about the origin, and hence at this

point either embeddedness breaks or the monotone condition breaks. This claim

is proven after this proof since it is important in other contexts in this paper, see

the Lemma 4.7.5. So we have derived a contradiction.

By equivariance, we must have that if lπ/4 appears in the blow-up then so does

l−π/4 and vice versa. Hence the blow-up is (a multiplicity n copy of) C0
π/2.
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Figure 4.12: In the case of a double density copy of Cπ/4
π/2 , the scale lemma guarantees an in-

tersection with the axes within some small ball. Thus we either have an non-
embedded (green) or a non-monotone (red) Lagrangian, a contradiction.

4. See [52, Theorem 5.2.15]. In the above argument, we can already see how the

rescaling is forming a Lawlor neck. The remaining details are similar to those

used by Wood, and are hence omitted.

Sketch proof of Proposition 4.7.4. Let Σ j be a sequence of connected components con-

verging to a multiplicity 2 copy of the cone C0
π/2. Since Σ j are connected within a ball

BR of small radius R for sufficiently large j, and since they converge to a multiplicity 2

copy of the cone C0
π/2, then within BR, either Σ j intersects the positive real axis greater

than once, or Σ j intersects both the real axis and the imaginary axis. Since they are

connected within BR and are equivariant, we must have that they bound a disc D ⊂ BR.

But D⊂ BR implies κ
∫

D ω < κ
∫

BR
ω << 2π , so L is not monotone before the singular
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time, a contradiction.

We conclude this section with the following lemma, which enables us to define

surgery at singularities. The same proof but with the cone Cπ/4
π/2 completes the proof of

Proposition 4.7.2.

Lemma 4.7.5 (Scale lemma). Let Lγ be a monotone equivariant Lagrangian mean cur-

vature flow in CP2 with a finite-time singularity at the origin at time T < ∞. Suppose

the type I blow-up is the cone C0
π/2 and the connected component converging to C0

π/2

intersects the real axis.

Then for any R > 0, ε0 > 0, δ > 0, there exists an ε with 0 < ε < ε0 and a time t ′

with T−δ < t ′< T such that Lγ∩BR intersects C0
π/2+2ε

at the time t ′, where BR :=BR(0)

is a ball of (Euclidean) radius R at the origin.

In essence, the scale lemma guarantees that singularity formation happens on an

arbitrarily small scale. When we do surgery, this allows us to reduce the intersection

number with the cone C0
π/2, thus controlling the total number of surgeries any flow

can undergo. Currently, no such result exists for Lagrangian mean curvature flow in

Euclidean space. Indeed, the proof we give relies heavily upon barriers that cannot exist

in Euclidean space; instead, all equivariant minimal surfaces that don’t pass through the

origin are Lawlor necks and are hence asymptotic to C0
π/2 rather than intersecting it near

the origin.

Proof. Suppose not. Then there exists R > 0, ε0 > 0, δ > 0 such that for any ε with

0 < ε < ε0 and t ′ with T − δ < t ′ < T , Lγ ∩BR does not intersect C0
π/2+2ε

. Since T is

the first singular time, we can, by taking a smaller R > 0 if necessary, have that Lγ ∩BR

is empty at time T −δ . We may also freely assume R < 1.

Note that since γ has a finite-time singularity at the origin, we have that there exists

some Q> 0 such that maxp∈γ r(p)<Q for all time t ∈ [0,T ), where r(p) is the Euclidean

distance to the origin.

Consider the complete immersed minimal equivariant surfaces LγC constructed in

Theorem 4.6.3, where γC(s) = rC(s)eis has initial values r(0) = r1,r′(0) = 0. Since LγC
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Figure 4.13: In order to form a singularity, γ must eventually intersect γC within BR/2. But to
do so, it must first intersect γC within the annulus A(R/2,R), and hence intersects
a cone C0

π/2+2ε
for ε > 0.

is complete, γC intersects γ a finite number of times, non-increasing under the flow. By

choosing C > 27 sufficiently large, we can find a curve γC such that

1. γC has maximum r2 > Q.

2. rC(s)< R/2 for all s ∈ [−π/4,π/4], see Proposition 4.6.4.

3. The inner period ψ
−
C (see Lemma 4.6.2) satisfies ψ

−
C < π/2+2ε0.

Consider the set

S = {p ∈ γ : p = γC(s) for s ∈ [0,ψC/2]} ,

where ψC is the period of γC. Since γ is monotone and both γ and γC are complete,
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this set is non-empty and finite for all time. Furthermore, if p ∈S , then r(p) ∈ [R,Q]

for all time by assumption, since otherwise we would have found a point p ∈ Lγ ∩BR

intersecting C0
π/2+2ε

for some ε with 0 < ε < ε0. Since the number of intersections

between γ and γC is non-increasing, Lγ ∩LγC ∩BR is empty for all time.

However, since the connected component giving C0
π/2 in the blow-up contains the

real axis, we have that the intersection with the real axis converges to 0 since otherwise

the blow-up would have to contain a line C0
a with a < π/4. In particular, there must exist

some time t̃ with T −δ < t̃ < T when Lγ ∩LγC ∩BR is non-empty, a contradiction.

Remark 4.7.6. The final step of the above proof can be simplified using the assumption

that the Lawlor neck is the type II blow-up.

4.8 Graphical Clifford tori are stable
A natural condition to impose on solutions of the equivariant flow (4.4.6) is that γ is

graphical over the minimal equivariant Clifford torus L1. We have already studied mini-

mal solutions of (4.4.6): the only embedded minimal solution is L1. Thus, by Proposition

2.3.3, if we can prove that γ has long-time existence, then we obtain convergence to L1

in infinite time.

Remark 4.8.1. Recall the fibration {Lα} by Clifford-type tori given by the moment map

µ([x : y : z]) =
1

|x|2 + |y|2 + |z|2
Ä
|x|2, |y|2

ä
.

The equivariant fibres are

Lr = {Lreiφ : r > 0}

and from here on we denote by Ω the holomorphic volume form relative to Lr. Then for

a Lagrangian L, we defined the Lagrangian angle θ relative to Ω by

ΩL = eiθ volL .

Recall that in the Calabi–Yau case, if θ can be chosen to be a real-valued function, we

call L zero-Maslov with respect to Ω. Furthermore, we call L almost-calibrated with
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respect to Ω if there exists some δ > 0 such that

cosθ > δ > 0.

Note that γ is graphical over L1 if and only if γ is almost-calibrated with respect to Ω.

However, unlike in the Calabi–Yau case, θ defined in this way satisfies the evolution

equation
∂

∂ t
θ = ∆θ +d†

α,

and hence the parabolic maximum principle does not imply that cosθ is increasing in

time. Indeed, consider the following setup: let γ be a small ellipse with eccentricity

0 < e < 1 centred on the origin. Then γ has a finite-time singularity at the origin. Fur-

thermore, if e is sufficiently close to 1, the singularity is type II and has type II blow-up

a Lawlor neck. In particular, there is no constant δ > 0 such that cosθ > δ for all time.

So almost-calibrated is not preserved in general.

Furthermore, even in the case where Lγ is monotone, we should not expect almost-

calibrated to be preserved locally. Indeed, we construct an example later in the thesis

where a non-graphical Clifford torus forms a finite-time singularity. However the con-

struction seems to indicate that the almost-calibrated condition breaks locally in this

case.

These examples illustrate two ideas. Firstly, we should consider γ as graphical

rather than almost-calibrated. Secondly, we should only expect graphical to prevent

type II singularities in the case that γ gives a monotone torus Lγ . This concludes the

remark.

Proposition 4.8.2. Let Lγ be a monotone equivariant Clifford torus, graphical over the

minimal equivariant Clifford torus L1. Then under mean curvature flow, Lγ exists for all

time and converges to L1 in infinite time.

Proof. As mentioned above, it suffices to show that we have long-time existence. First,

note that the graphical condition is preserved up to any potential singular time since the

intersection number of γ with any cone Ca
b is decreasing in time by Proposition 4.7.2.

Suppose for a contradiction that we have a finite time singularity at time T . Any
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finite-time singularity must occur at the origin by Proposition 4.7.2, and must have blow-

up given by C0
π/2.

For any graphical γ and ε > 0, the cone C0
π/2−2ε

intersects γ 4 times, dividing

the Maslov 4 disc into 4 triangles. Denote the triangles intersecting the positive and

negative real axes by P+
ε and P−ε , and the triangles intersecting the positive and negative

imaginary axes by Q+
ε and Q−ε . Note that since Lγ is monotone,

∫
P+

ε +P−ε +Q+
ε +Q−ε

ω = 4π/6 = 2π/3.

Suppose the type II blow-up of a connected component is a Lawlor neck intersecting the

real axis (this assumption is reasonable and simplifies the proof, but can be removed, see

Remark 4.7.6). Then for any ε > 0, we have that

∫
P+

ε

ω → 0

as t→ T , where Pε is the J-holomorphic triangle bounded by γ and C0
π/2−2ε

, intersecting

the positive real axis and with a vertex at 0. But the total area contained outside the cone

is bounded above by π/2+2ε , so

∫
Q+

ε +Q−ε
ω < π/2+2ε.

Let ε = π/48. We can find a time t close to T such that

∫
P+

ε +P−ε
ω < π/24.

Then at t, ∫
P+

ε +P−ε +Q+
ε +Q−ε

ω < π/2+π/12 = 7π/12 < 2π/3,

which contradicts Lγ being monotone.

Remark 4.8.3. As in Remark 4.7.6, the assumption that the type II blow-up is a Lawlor

neck simplifies the proof, but is not necessary.

Remark 4.8.4. The proof above actually relies on a secondary, weaker property of
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graphical Lagrangians. Instead of requiring a single pair of intersections with each line

lb, we can instead demand only that γ intersects the cone C0
π/2 of opening angle π/2 in

the minimum of 4 locations.

4.9 Equivariant Chekanov tori collapse
In the following, we will analyse the behaviour of equivariant Chekanov tori under mean

curvature flow. Note first of all that any equivariant Chekanov torus does not intersect

either the imaginary or real axis. Without loss of generality assume the former. Then

there exists a cone C0
ψ of maximal opening angle ψ such that C0

ψ∩Lγ is non-empty. Since

Lγ is monotone and the area inside the cone C0
ψ is ψ/2, we must have that ψ > 2π/3.

We begin by proving there are no minimal equivariant Chekanov tori. This is in-

teresting in its own right, and the method of proof suggests it may generalise to the

non-equivariant case, a result that we conjecture in Chapter 5.

Proposition 4.9.1. There is no minimal equivariant Chekanov torus.

Proof. The result is immediate by the classification of equivariant tori in Section 4.6.

However, we present a different proof since we believe the idea of the proof may be

more widely applicable.

Let Lγ be an equivariant Chekanov torus. Without loss of generality, we are free to

restrict to the subclass of Chekanov tori Lγ for which γ does not intersect the imaginary

axis in C.

Since γ does not intersect the imaginary axis and Lγ is equivariant, there is some

maximal angle ψ such that C0
ψ intersects γ . Since γ does not pass through the origin and

does not intersect the imaginary axis, ψ = π−δ for some δ > 0. Denote the first points

of intersection of Lγ and C0
ψ by p+ and p−, i.e. if p ∈C0

ψ ∩Lγ , then r(p±)≤ r(p).

Consider the J-holomorphic triangle P with boundary on lψ/2, l−ψ/2 and γ with one

vertex at the origin and the other two vertices at p+ and p−. As in Example 4.5.2,

µ̃(P) =− 1
π
(π−2ψ) ,
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Figure 4.14: The triangle P collapses in finite time for a Chekanov torus.

and hence by (2.2.5) we have that

−
∫

γ0

H = κ

∫
P

ω +π−2ψ,

where γ0 is the arc of γ running from p+ to p−. But

∫
P

ω <
ψ

2
− π

3

since the area of P is bounded by the difference between the total area contained in the

cone and the area of the Maslov 2 disc bounded by γ . So

−
∫

γ0

H < 3ψ−2π +π−2ψ = ψ−π =−δ < 0.

Hence Lγ is not minimal.

Corollary 4.9.2. Let Lγ be an equivariant Chekanov torus in CP2. Then under mean

curvature flow, Lγ has a finite-time singularity at the origin [0 : 0 : 1].
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Proof. By Proposition 4.9.1, there is no minimal equivariant representative in the Hamil-

tonian isotopy class of Lγ . Proposition 2.3.3 therefore implies that we have a finite-time

singularity, which must occur at the origin by Proposition 4.7.2.

We also proffer an alternative proof using the evolution equation derived in Lemma

4.5.3.

Proof. Suppose there is no finite-time singularity. We are in the situation of Lemma

4.5.3, noting that the maximum opening angle must be a smooth function of t for all t

sufficiently large. By the argument above, the right hand side of (4.5.4) is less than −δ

for some δ > 0. But then there is only a finite period of time when P has positive area,

a contradiction.

4.10 Neck-to-neck surgery
In this section we analyse the behaviour of Lagrangian tori at the singular time. The

equivariant condition necessarily (and intentionally) restricts us to two Hamiltonian iso-

topy classes of Lagrangian tori: the Clifford and Chekanov tori. We have shown in

Proposition 4.9.2 that an equivariant Chekanov torus achieves a type II singularity at

the origin with type II blow-up given by a Lawlor neck. Resolving the Lawlor neck

singularity by neck-to-neck surgery gives a Clifford torus. We have also shown that

almost-calibrated Clifford tori have long-time existence and convergence to the equiv-

ariant minimal Clifford torus. Our dream is that under Lagrangian mean curvature flow

with surgeries, exotic tori in CP2 flow towards a minimal Clifford torus in infinite time,

so we are led to ask the following question in our symmetric case:

Question 4.10.1. Does an equivariant Chekanov torus flow to a minimal Clifford torus

after neck-to-neck surgery?

The answer to this question is yes, with the caveat that the number of neck-to-neck

surgeries may be greater than one.

In fact, we will prove the following:
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Theorem 4.10.2. Let Lγ be a equivariant Clifford or Chekanov torus in CP2. Then,

after a finite number of neck-to-neck surgeries, Lγ converges to the unique equivariant

minimal Clifford torus L1 in infinite time.

Furthermore, we also give a proof of the following existence result:

Proposition 4.10.3. Let n≥ 0 be an integer. Then

1. There exists a Clifford torus that undergoes exactly 2n neck-to-neck surgeries be-

fore converging to a minimal Clifford torus.

2. There exists a Chekanov torus that undergoes exactly 2n+ 1 neck-to-neck surg-

eries before converging to a minimal Clifford torus.

Definition 4.10.4. Let Lγ be an equivariant Lagrangian mean curvature flow with a

finite-time singularity at [0 : 0 : 1] at time T < ∞. Suppose the type I blow-up is the

cone C0
π/2 and the type II blow-up is (independent of rescaling) the Lawlor neck asym-

pototic to C0
π/2 intersecting the real axis. For any r > 0, we can find ε > 0 and a least

time t ′ < T such that Lγ ∩Br intersects C0
π/2+2ε

as in Lemma 4.7.5. We define a new

curve ζ in C which will give a Lagrangian Lζ , which we will call the scale r surgery of

Lγ .

Let p± = r′e±i(π/4+ε) be the smallest radius points of intersection of Lγ ∩Br and

C0
π/2+2ε

. Similar to the proof of Lemma 4.7.5, we can find a curve segment ζ ′ (intersect-

ing the imaginary axis this time), smoothly tangent to C0
π/2+ε

at points q±,−q± at radius

r′′ < r′. Define ζ to be the union of ζ ′, γ ∩A(r′,∞) and a smooth curve interpolating

between p± and q±.

Rescale radially and perform Moser’s trick as in Vianna’s construction to obtain

from Lζ a monotone surgery of Lγ .

Remark 4.10.5.

1. On the level of Lagrangians, this construction is not canonical. Since we need to

use Moser’s trick to obtain a monotone torus, monotone surgery is never going

to be canonical unless you can flow directly through the singularity. In this case
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however, there is a canonical way to perform Moser’s trick since the equivariance

means you can just rescale radially until you obtain a monotone torus. This is a

quirk of the equivariance and cannot be expected in general.

2. The surgery procedure does not require that the type I blow-up is multiplicity 1

(even though we conjecture that all type I blow-ups in this situation are multiplic-

ity 1). In the case that the multiplicity is higher than 1, the closest intersection

point with the cone C0
π/2+2ε

is continuous in time for times t sufficiently close to

the singular time T . Hence there is no ambiguity about the neck to be cut and

rotated in any case.

3. The surgery is canonical from a symplectic point of view since we always land in

the same Hamiltonian isotopy class.

4. The surgery procedure is designed to reduce the intersection number of Lγ with

C0
π/2. Since we rescale radially, applying Moser’s trick does not alter the intersec-

tion number.

Proof of Theorem 4.10.2. As in the proof of Proposition 4.9.2, we restrict to the case

where Lγ intersects the imaginary axis either twice (in the case of a Clifford torus) or

not at all (in the case of the Chekanov torus). Then by Proposition 4.7.2, equivariant

tori can only achieve finite-time singularities at the origin [0 : 0 : 1] with type I blow-up

given by C0
π/2, and type II blow-up given by a Lawlor neck asymptotic to C0

π/2.

Since Lγ is compact, it has a finite number of intersections with C0
π/2. By Propo-

sition 4.7.2, the number of intersections is a decreasing function of time under mean

curvature flow, and by definition neck-to-neck surgery decreases the number of intersec-

tions with C0
π/2.

If Lγ is a Chekanov torus, Proposition 4.9.2 guarantees a finite-time singularity, at

which point Lγ becomes a Clifford torus after surgery. Similar to the proof of Proposition

4.9.2, if Lγ is a Clifford torus intersecting C0
π/2 greater than 4 times, then Lγ has inflection

points and hence cannot be minimal. So Lγ either has a finite-time singularity, or after a

finite time has only 4 intersections with C0
π/2.
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Since the number of intersections is strictly decreasing after surgery and both the

above cases end in either surgery or a reduction of the number of intersections, after a

finite time and a finite number of surgeries, we have the minimum number of intersec-

tions. It has already been shown in Proposition 4.8.2 and the succeeding Remark 4.8.4

that if Lγ has 4 intersections with C0
π/2, then Lγ exists for all time and converges to L1.

The result follows.

Remark 4.10.6. As in the secondary proof of Proposition 4.9.2 we could work with

the evolution equations for
∫

P ω directly, rather than just showing there are no minimal

objects and applying Proposition 2.3.3.

We now construct a Clifford torus with a finite-time singularity to prove Proposition

4.10.3. The construction is somewhat technical but the idea is fairly simple: construct a

monotone Clifford torus that has curvature sufficiently high in a neighbourhood of the

origin, and use a barrier to stop γ from crossing the cone C0
2π/3 for long enough that

a singularity is inevitable. The constants chosen in the course of the proof are of no

particular significance.

First, we prove a small lemma concerning the type I singular time of non-monotone

Chekanov tori.

Lemma 4.10.7. Let Lζ be a non-monotone equivariant torus bounding a Maslov 2 disc

D of area A =
∫

D ω < π/3. If ζ has r > R(A) =
√

A(π−2A)−1 everywhere, then Lζ

has a type I singularity away from the origin at time

T =
1
6

log
Å

π

3A−π

ã
.

Proof. We have that
d
dt

∫
D

ω = κ

∫
D

ω−2π,

so denoting f (t) =
∫

D ω , we have

f (t) =
(

A− π

3

)
e6t +

π

3
.
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Hence the final existence time T of Lγ satisfies

T ≤ 1
6

log
Å

π

3A−π

ã
,

with equality if the singularity is type I.

Now consider LR(A) given by γR(A)(s) = R(A)eis. Equation (4.4.1) reveals that LR(A)

bounds a Maslov 4 disc of area B = π
2R(A)2

1+2R(A)2 , so B > 2A. Furthermore, a similar

calculation to above gives the final existence time T ′ of LR(A) as

T ′ =
1
6

log
Å

2π

3B−2π

ã
.

Note that if Lζ has a type II singularity, it must be at the origin and since LR(A) is a barrier

to Lζ , it must occur after T ′. But B > 2A implies that T ′ > T , and the result follows.

Proof of Proposition 4.10.3. We construct the n = 1 case, i.e. an equivariant Clifford

torus Lγ with a finite-time singularity. The cases n > 1 follow an iterated version of the

n = 1 case, and the Chekanov case follows automatically from the Clifford case.

See Figure 4.15 for the construction we now describe. Since γ is equivariant, it

suffices to describe the construction only in the positive real quadrant, i.e. the region

Z = {reiφ ∈ C : φ ∈ [0,π/2]}.

Let γ be a equivariant curve such that Lγ is a Clifford-type torus and γ intersects the

cone C0
2π/3 3 times in Z. Suppose γ has the minimum of 2 inflection points, i.e. points

with 〈γ,ν〉= 0. Note that then there are two biangles Q and R bounded by γ and C0
2π/3.

Furthermore, there is a triangle P formed by γ and the cone C0
ψ where ψ is the widest

opening angle such that C0
ψ intersects γ exactly 2 times in Z.

We can choose γ such that we can find two Euclidean circles ζ ⊂Q and η ⊂ R each

bounding discs with area π/18. Furthermore, we can choose γ such that ζ and η both

have r > R(π/18) as in the requirements of Lemma 4.10.7.

Furthermore, we can choose γ such that the triangle P has area π/216. It is clear

we can make these choices whilst also choosing γ such that Lγ is monotone.
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Figure 4.15: The construction of a Clifford torus with a finite-time singularity. Choosing the
area of P sufficiently small and the areas of Q and R sufficiently large guarantees a
finite-time singularity.

The non-monotone Chekanov tori Lζ and Lη give lower bounds for the final time∫
Q ω,

∫
R ω > 0 via direct application of Lemma 4.10.7. We have that that

∫
Q ω > 0 and∫

R ω > 0 (and hence ψ > 2π/3) for all times t < T with

T :=
1
6

log
Å

6
5

ã
.

Suppose for a contradiction that the flow exists on the interval [0,T ]. Then the

triangle P exists for that period also, and the evolution of the triangle P is as in Lemma

4.5.3. We have that

d
dt

∫
P

ω ≤ κ

∫
P

ω +(π−2ψ)≤ κ

∫
P

ω− π

3
,
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since ψ is decreasing under the flow. Denoting u(t) = κ
∫

P ω − π/3, we see that u(t)

satisfies the differential inequality

d
dt

u(t)≤ κu(t),

to which we can apply Grönwall’s inequality. Since κ = 6, we deduce that u(t) satisfies

u(t)≤ u(0)e6t ,

and hence ∫
P

ω ≤
(

π

216
− π

18

)
e6t +

π

18
=

Å
1− 11

12
e6t
ã

π

18

Hence the triangle P has a maximum existence time of

T ′ :=
1
6

log
Å

12
11

ã
,

which is strictly less than T , a contradiction. Hence a finite-time singularity occurs in

the period [0,T ].
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A Thomas–Yau conjecture for the

complex projective plane

We showed a Thomas–Yau type result holds for the equivariant tori in CP2: we have

long-time existence with a finite number of surgeries and convergence to a minimal

Lagrangian. In doing so, we defined a notion of neck-to-neck surgery, which to the

author’s knowledge is the first example of a Lagrangian mean curvature flow surgery in

the literature. Here, it was vital that we were in a Fano manifold: there is not yet any

analogue of the scale lemma (Lemma 4.7.5) in Calabi–Yau manifolds, and this lemma

was vital in guaranteeing we had a finite number of surgeries.

From the point of view of the Fukaya category, the Clifford and Chekanov tori (and

indeed all of Vianna’s exotic tori) represent isomorphic objects, so we conjecture a full

Thomas–Yau theorem for the complex projective plane:

Conjecture 5.0.1 (Thomas–Yau conjecture for the complex projective plane). Let L be

an embedded monotone Lagrangian torus in CP2. Then L exists for all time under

Lagrangian mean curvature flow with surgery, and converges in infinite time (after a

finite number of surgeries) to a minimal Clifford torus.

We also conjecture two related statements, which do not concern Lagrangian mean

curvature flow directly, but are interesting independently.

Conjecture 5.0.2. Let L be an embedded monotone Lagrangian torus in CP2. Then up

to Hamiltonian isotopy, L is one of Vianna’s exotic tori.
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Conjecture 5.0.3. Let L be a minimal embedded Lagrangian torus in CP2. Then L is

the standard monotone Clifford torus up to a rotation by PU(3).
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